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Abstract
This paper addresses the issue of defining a location service
suitable for very dynamic and highly populated networks
(milli ons of users), where services might experience highly
correlated peaks of traff ic or synchronized access to specific
servers. A cooperative mobile agent solution is proposed to
solve the major problems, allowing the dynamic
deployment of new application servers when needed. But it
requires an adequate location service to route the clients to
the application servers, which scales to a large number of
clients and still allows a high number of updates. This paper
presents a very dynamic location service, which adapts to
overload situations by modifying the routing information
distribution and (possibly) its servers’ internal structure.
The responsive and fast route update results in a load re-
distribution, which allows it to scale to a broader range
compared to other alternative approaches.

I . Introduction

Traff ic in future multi -service networks will be much more
dependent on the location of the applications, or the way
clients find servers, than the present situation of sparse
servers at the edges of the network. There is today a
growing widespread requirement for applications with
guaranteed quality of service, used by an unpredictable and
large number of clients, and which must be deployed in an
affordable way. If the network routing capabilit y is not
accounted during application deployment then, server
overload and network congestion can easily happen. Under
these conditions, the routing of communications traff ic is
no longer simply a strict network problem (it needs to be
taken into account at the application level).

A common characteristic of some applications can be
the possibilit y of generating highly correlated peaks of
traff ic due to client interaction with the servers. Examples
are easy to envision: applications based on interactive TV
interfaces, where contests, promotional prices
announcements or audience queries may synchronize the
sending of requests to particular servers; real-time sport
brokering; teleshopping; etc. The application technology
will most likely rely on a highly variable server group to
adapt to client load peaks, producing a non-static
environment.

The scalabilit y of such applications to a large number
of users depends on the number of application servers
available, and also on the bandwidth and on the system
features on the overall server support. The location service
is one of these features. It matches clients with server
objects and might suffer from overload or become a
critical point in the system.

This paper extends a previous work on a dynamic
location service [1] by defining an adjusting mechanism of
its structure in response to overload conditions. The
following section provides the necessary background and
section III presents the location service main
characteristics. The location service architecture is
described in section IV and section V describes the
location service adjusting mechanism.

II . Background

When the world-wide network structure is analyzed, the
tendency is to have very high bandwidths on local
networks with their nodes densely connected, but
interconnected more sparsely by core networks (with
growing bandwidth available, supported by technologies
like WDM and optical switches). On such networks, the
bandwidth limitations and network delay will probably be
originated on the core networks, in result of traff ic
correlation between local networks.

The availabilit y of the applications on the network will
depend on the number and distribution of the application
servers, and on the “routing” of the application clients
requests, which must interact with the nearest application
server, using the minimum bandwidth channels at the core
networks. Moreover, the application servers must be
deployed near the clients, and their number must be able to
support the client’s load. Present solutions rely mainly on
sets of static processing servers. Client requests are
balanced using transaction processing monitors with load
balancing faciliti es, or routers of IP anycast group
addresses (used for instance, to implement replicated
WWW servers [2]), etc. The common AI approach to the
problem is to assign tasks to processors (ex. market



oriented techniques [3], advanced contract net based co-
ordination protocols [4], etc). However, new technologies
such as mobile agent systems [5] and active networks [6]
bring the possibilit y of creating and destroying servers in
real-time, at any enabled node on the network. The mobile
application servers are able to collect information about the
network state, and adapt to machine and network load
dynamically. New co-operation techniques are then
needed, to select where and when to create or destroy
application servers.

A new algorithm for controlli ng the deployment of
application servers was proposed on [7][8] to deal with
connectionless clients, which have atomic interactions with
the servers. The application servers are able to decide
when and where they create new servers, or when they
destroy them by measuring their load, by storing a statistic
map of the client’s origins, and by running a co-operation
algorithm with their neighbors. Simulation results proved
the algorithm scalabilit y, with bounded client service
delay. The algorithm was extended in [9] to handle session
oriented client-server interactions, where the allocation of
connection links is also taken into account. The quality of
a connection becomes the fourth aspect to take into
consideration to control the deployment of application
servers. Moreover, clients might be relocated during a
session in result of a connection quality of service
violation, originating the migration or replication of an
application server.

However, the algorithm proposed in [7][8][9]
introduces new requirements to the location service, which
are not met by most of today’s name services, directory
services and routing services. Three main diff iculties are:
(a) high variabilit y introduced by the dynamic deployment

of application servers;
(b) responsiveness required during server’s overload (the

client must know the availabilit y of new servers
quickly); and

(c) the global scale involving billi on of nodes, where
almost every gadget might be connected to the network
and be involved in the applications (e.g. Jini technology
[10]).

The application name resolution must depend on the
application servers available, and evolve according to its
distribution, balancing the load on the network according
to its distribution. A new location service architecture was
introduced in [1]. It proposed a new information structure,
with enhanced features compared to the traditional one
(hierarchical structure). However, the dynamic mechanism
of its structure was disabled to focus on other aspects. This
paper enhances the architecture by defining a dynamic
location service control algorithm, which co-ordinates the
location server’s deployment and the dissemination of
routing information.

III . Location Service Characteristics

From the application point of view, the location service
acts as an interface between clients and servers, and
between both clients and servers and the other network
services (e.g. for selecting agent virtual machines). Some
characteristics where added to the basic “name resolution”
functionality.

Servers register their application specifying the range in
the network where it must be known. The ranges are
specified using a metric provided by the location service,
based on geographical proximity and possibly on network
state measurements. For instance, a car parking
information application, used by the vehicles’ computer to
search for free spaces in car parks, would probably restrict
its range to the neighborhood of the servers. Clients
performing a lookup would catch the nearest servers. The
main advantage of restricting the application routing
information is the scalabilit y of the location service, which
deals with less unnecessary global information [1].

When more than one server registers a name, the
location service balances the resolution of the name using
two different approaches, depending on the distance to the
servers. Near the server, the location service keeps server
processing capacity and load information provided by the
servers (e.g. 30% of occupancy) and uses it when resolving
the name. For higher distances, the location service does
the selection based exclusively on the “distance” criteria,
or using a round-robin order, for similar distances.
Therefore, it promotes the usage of local resources and
reduces the core network traff ic, improving the application
scalabilit y.

Clients may use two alternative lookup modes: a full
lookup, which returns a server interface (if available), or a
next step lookup, which returns a reference to an
intermediate location service interface or to the server,
depending on the distance. The second mode supports
mobile agent clients, which may want to migrate to an
intermediate node before running the application [8].

IV. Location Service Architecture

The location service was implemented using a distributed
set of location servers (L-servers), which form a location
network. Connectionless approaches (e.g. based on
roaming scout agents [11]) do not guarantee a limited
name resolution time for a new name.

The location service was designed to be fault resistant. It
adapts automatically to the network structure, to network
partitions and link’s congestion. A dynamic structure was
adopted, to allow the adaptation of the L-server’s hierarchy
to the state of the network. L-servers are implemented
using mobile agents, and run on the Agent Virtual
Machines (AVM) in parallel with the other application
agents. The mobile agent semantics allows the dynamic
creation, migration and destruction of L-servers. Each
AVM runs a local object, the Local Location service Proxy
(LLP), which provides an uniform local interface to the



location service. The location network is structured on top
of a LLP network, which defines the neighborhood
relations between AVMs (see fig. 1). This LLP network is
modified only by system administrator configuration,
network faults or by the adding or removing of AVMs.
Each LLP is associated with a first hierarchical level L-
server, for publicizing the local servers and for searching
for external ones. The LLP monitors the links to its
neighbors and to the L-server, to detect faults. If a
connection to the L-server is lost (for instance, due to a
network partition), a voting algorithm is used to select an
LLP, which will create a new L-server. Failures are also
detect by the L-servers, resulting on an automatic
reconstruction of the location network on each of the
network’s partitions.
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Figure 1: Network Model

Application names are resolved by performing lookups
through a sequence of L-servers. The routing information
for the search path is based on service hints. Hints are
either the full application name (including the server
interface reference) or incomplete information about the
application (a pointer to an intermediate L-server, a hash
value of the name) just to direct the search to another L-
server. The further away from the server the more
incomplete the hint becomes. Servers register their
interfaces and names on the local LLP, which forwards it
to the local L-server. The L-server will t hen disseminate
service hints to other L-servers, possibly at various
hierarchical levels, to create paths from every L-server on
the requested range. A large range implies the use of
higher levels to aggregate the necessary L-servers. The
rationale is similar to other packet routing algorithms.
However, a coordination protocol was introduced, to
dynamically control the number of paths available between
the L-servers.

The location service must provide the information about
a new server very quickly, to allow clients to start using it.
Consequently, no caches can be used. The alternative of
using network-wide cache invalidation would be too
complex and costly. This requirement (of not using caches)
is not specific to our system, but generally applies to

systems that balance load between replicated servers. For
instance, for the CISCO DistributedDirector [2] operating
on DNS mode, it is recommended that TTL must be set to
zero. An alternative solution was also proposed at the
GLOBE project [12]: to cache pointers to L-server’s
interface references. However, it may hide a new server,
which appears nearer the client, reachable from an L-
server on the short-circuited search path.

The location network does not use a pure hierarchical
structure, where each L-server is only connected to lower-
level L-servers or LLPs, and possibly to an upper-level L-
server. On previous experiments [1] we showed that, if no
caches are used, a large percentage of the requests would
reach the L-servers at the top hierarchical levels, creating a
processing bottleneck that would limit the maximum
number of lookups (e.g. DNS with TTL=0). Even the
solution of having differentiated root L-servers specialized
on a subset of the names [12] may fail because the
overloading resulting from a single application used by
concurrent milli ons of users might be enough to overload
the higher-level L-servers.

The location network is structured as a mixture of a
meshed and a hierarchical structure where L-servers at
each hierarchical level interact with some of the others at
that level and (possibly) with one above. Higher
hierarchical levels always have incomplete information
about the available services, to reduce the update rate
needed. Routing information (service hints) is
disseminated between L-servers horizontally, at the same
hierarchical level (possibly at more than one hierarchical
level) and vertically to higher hierarchical levels.
Horizontal dissemination involves L-servers sending
information packets to their neighbors. The receivers
process the packet, discard the elements within the offer-
list, which are out of range, and forward it to the next L-
server further away from the origin. Simulation results [1]
showed that the cost of horizontal dissemination (in
number of messages exchanged) is proportional to the
number of L-servers existing on the requested range, and
very high compared to the vertical dissemination.
However, it can support many more client requests, due to
the creation of multiple paths using different L-servers,
whereas the alternative (vertical dissemination) creates a
single path through a root L-server. A threshold for the
maximum number of L-servers was defined to limit the
dissemination costs of horizontal hint dissemination. This
value delimits the maximum range, which can be
supported by each hierarchical level (the distance to the
furthest L-server). In consequence, for each application,
the maximum possible hierarchical level required is
defined by the requested application range.

V. Location Network Control Algor ithm

The dissemination of service hints and the location
network structure are dynamic and change due to three
factors: the network-state, the names registered, and the
lookup and registration load. An inter-L-server co-



ordination algorithm is used to guarantee that the L-servers
are enough to respond to the requests and to keep the
routing information coherent during the internal
modifications. The algorithm controls four main location
service parameters:
• the horizontal hint dissemination (called the “Spread”);
• the range where local service hints are replicated on

neighbor L-servers (called the “Core” range);
• the number of L-servers at each hierarchical level;
• the number of hierarchical levels.

Spread. The horizontal dissemination of service hints on
L-servers at lower hierarchical levels reduces the lookup
load on the L-servers at higher hierarchical levels. For
instance, in fig. 2, if the L1

c´s spread for the ill ustrated
server’s application name includes L1

b and L1
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Figure 2: Spread parameter

Each L-server controls the horizontal dissemination for the
immediately lower-level L-servers, using Spread Control
Messages: an L-server may send a request to any of its
lower-level L-servers to increment or reduce the spread on
a set of names. Each receiver will t est its maximum range
and local load, and may refuse an increase if they are
higher than the maximum values allowed. When a service
hint is first disseminated, no horizontal dissemination is
used, except for the maximum hierarchical level L-server
required by the service hint. At that level, the service hint
is disseminated horizontally on the server’s requested
range. The rationale is to deploy the structure with the
lowest update overhead, yet adapted to the search load.

Core. The replication of a service hint on other L-servers
reduces the lookup load on the original L-server. As fig. 3
shows, the lookups will be balanced between L1

b, L
1

c and
L1

d. However, it also increments the service update
overhead. All L-servers on the core range will disseminate
the replicated service hints as their own. Another side
effect is that the server processing capacity information of
each individual service hint has to be updated on the L-
servers, to avoid compromising the application client’s
load balancing.

Each L-server controls its core ranges, but co-ordinates
the modifications with the neighbors. When an L-server
receives a core update message, it may refuse to create a

local service hint replica (because it could already be
overloaded). Hence, the operation may fail .
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Figure 3: Core parameter

L-server replication. The creation of extra L-servers at
the same hierarchical level reduces the lookup load at the
neighbor L-servers. However, it will also increment the
service hint update cost on the location network, reduce the
maximum range supported at that hierarchical level, and in
result, it may possibly create a new hierarchical level. This
is so because there will be less low level L-servers per L-
server. In consequence, it is used as a last resort to deal
with lookup overload situations.

Top hierarchical level. The number of hierarchical levels
on a location network depends on the ranges requested by
the application servers. The maximum requested range
must always be supported by some of the top hierarchical
level L-servers. A new hierarchical level is created when a
not supported range is requested (or when a range becomes
not supported due to L-server replication). The downsizing
is performed in the following way: a root L-server ceases
to exist when it is inactive for more than a threshold time
and does not have any service hints. New hierarchic levels
allow the reduction of actualization costs for a restricted
set of names. However, they produce longer resolution
paths and support lower lookup load peaks.

Load adaptation algor ithm. The first three location
service parameters are controlled by a distributed co-
operation algorithm run by all L-servers. L-servers monitor
their local lookup load (for each name), determining if the
lookups were routed from lower level or “near” neighbor
(compared to the average distance of the neighbors) L-
servers (FromDown), or if they were routed from higher
level or “distant” L-servers (FromUp). They react when the
average Load is outside an allowed variation range.

The adaptation reaction speed depends on the load
measurement. If the algorithm responds too fast, it may
create an unstable behavior when the load pattern has some
kind of periodic variation, origination a high re-
configuration overhead. Tests were made measuring the
average load on fixed length intervals, and applying
formula (1) (a modified discrete first order filter to
attenuate the variation of the load measured). The
coeff icient αi depends on the last measurement (loadn)
being higher (αup) or lower (αdown) than the previous
average (Loadn-1). The oscill ations were avoided by
setting αup greater than αdown, thus making the system
respond slowly to load reductions.

(1) Loadn= αi.loadn + (1-αi).Loadn-1



When Loadn is above the MaximumLoadThreshold an L-
server tries to:

1. Increase the Spread on the lower-level L-servers (if
FromDown);

2. Increase the Core (if FromUp);
3. Create an L-server replica if 1 and 2 failed and (Loadn

> “Minimum Replica Creation Threshold” ).

When Loadn is below the MinimumLoadThreshold an L-
server tries to:

1. Reduce Spread on the lower-level L-servers;
2. Reduce Core (if the resulting load (proportional to the

modification on the number of replicas) is within the
constraints;

3. Self-destroy if 1 and 2 failed and (Loadn < Minimum
Existence Threshold).

Before self-destroying, an L-server selects a neighbor,
which will receive its lower-level L-servers or LLPs. The
dying L-server (contractor) sends the neighbors a request
for bids, and selects the L-server, which sent the best bid
(less loaded and nearer). If any of the neighbors is
overloaded, it cancels the self-destruction procedure. As a
final stage, it sends a control message to the lower-level L-
servers/LLP for modifying their upper-level L-server. The
lookup load originated by the lower-level L-servers is
accounted on further interactions of this algorithm by the
contracted L-server, which increments its local load
variables.

The location service parameters are also influenced by
application server updates. If a server changes its location
frequently, the spread and core parameters will be reset
frequently to zero, and in consequence, the service hint
dissemination is almost restricted to the vertical dimension.

Server migration or destruction handling. After server
migration or destruction, L-servers disseminate service hint
update packets to correct the routing information, creating
a cancellation wave. If an alternative server is known, a
temporary forward-chained pointer is created on the
server’s local L-server. The cancellation wave can then be
completed as a low priority task, during low load periods,
except on the region of the location service where the
server’s load and capacity is accounted. The location
service clients must store the path of L-servers looked up.
When a name lookup reaches a dead end (due to crossing a
cancellation wave, for instance), the client must return to a
previous looked up L-server.

Location Service Performance
The location service implementation was optimized for
applications based on replicated servers, where peaks of
concurrent client requests may occur. It achieves the best
performance when the number of server replicas is high
and servers are uniformly distributed on the network.
Under these circumstances, service hints are available on
the lower hierarchical levels, resulting on fast local
searches and fast updates.

Nevertheless, the application adaptation algorithm
requires also that the location system support peaks of
requests concentrated on a network region. When an
unpredictable large number of clients start to use the
application and the number of initial servers is low (for
instance one), all the clients from the initial peak will
concentrate their name resolutions on a single L-server
(where the initial application server registered its
interface). A previous paper [8] showed that for a static
hierarchy location server, if the bandwidth is large enough
and the application server deployment algorithm is used,
the application bottleneck would be the location service.
The increment of the core parameter and the replication of
L-servers allow the location service to respond to a peak of
requests concentrated on a single L-server on the network.

The proposed location service implementation is less
effective if static servers (which do not move) use it or if
the name is searched by a diminutive number of clients
(which do not require load balancing). For instance, when
the location service is used for tracking the location of a
mobile object. The dissemination and the name resolution
overheads are higher under these conditions. Better
alternative approaches are the caching of the previous
resolutions, or the assignment of “home” L-servers for the
resolution of names (e.g. DNS round robin assignment
[13], uniform resource names [14]). However, these
solutions are not reliable in the case of a server failure
(because of the cached interface references) or in the case
of the “home” L-server failure.

Simulation Results. A simulator was developed using the
“Discrete Event” model on the Ptolemy system [15], which
implements the location service protocol. The simulation
presented in this paper compare the name resolution delay
of a static hierarchical location service (without caches)
and of the dynamic location service proposed. All
simulations were conducted with a network of 625 AVMs,
where each AVM has an average of 3 connections to its
neighbors, with a maximum distance of 24 (AVM) hops.
Three hierarchical levels were used for the static service
with 125 L-server at the first level, five L-servers at the
second level and a single root L-server at the third level.
The dynamic network was initialized with the same
configuration at the beginning of the simulations. The
average time to process location service lookups at each L-
server is 40 tics and the transmission time between nodes
was set to one tic. Client load was constant (0.0625 new
name searches per tic) and symmetrical. Three initial
servers where registered on three AVMs in near
symmetrical regions of the network. On the dynamic
network case, L-servers measured the processor utili zation
time during intervals of 10000 and 1000 tics, and tested the
average load after each measuring interval (using 75% for
αup weight and 50% for αdown). The Maximum and
Minimum Load Thresholds were respectively 95% and
10%. The graphic of f igure 4 shows the evolution during
the simulations of the average name resolution time
measured in intervals of 5000 tics.
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Figure 4: Average Name Resolution Time for a static
location network and for a dynamic location network

with load measurement periods of 10000 and 1000 tics.

On the conditions simulated, the first level L-servers where
the servers registered the name can deliver the requested
load (they support 0.025 queries per tic and the load is
distributed by three L-servers). However, the static version
is overloaded (the root L-server is overloaded). Both
dynamic location services reconfigured by setting a spread
of six AVM hops on three second level L-servers, plus a
temporary core update at the local servers’ location server
(in result of a peak of requests which followed the spread
modification and some asymmetry in the distribution). The
dynamic network with the lowest load measurement
interval reacts faster, in result of the higher measured load
update frequency.

Conclusions

The scalabilit y of applications on large network is strongly
related to the responsiveness of the location service and its
abilit y to distribute the load between all the server replicas
according to the network state. This paper presents a
scalable location service architecture, suitable to very large
systems with mobilit y and the possibilit y of handling
overload situations. We show that a dynamic structure
based on intelli gent L-servers, allows a faster and more
scalable response, compared to a static structure (the
simulation proves it). The trade-off is the need to exchange
information inside the service. However, this is not so
critical because application servers adapt to client load and
most of the relevant lookups tend to be local.

On-going work includes (a) a thorough study about the
dynamics of the interaction between the application
dynamic deployment algorithm and the location network
adaptation algorithm, and (b) the trade-off between
application server clone creation and the cost of
maintaining consistency of application data (“ low-cost”
inter-replica state synchronization techniques).
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