A Constructive Type Schema for Distributed Multimedia Applications
Paulo Pinto, Luis Bernardo and Paulo Pereira

Inesc /IST, R. Alves Redol, 9 P-1000 Lisboa, Portugal
{pfp, lflb, prbp}@inesc.pt

ABSTRACT

The constant evolution of multimedia technology puts strong requirements on
the design of distributed multimedia systems if upgradability and extensibility
are desired. A proposal for an object and a composition models based on a
constructive type schema is described in this paper. Objects and compositions are
aggregations of various small aspects to which the system reacts. As the system
gets richer and more complete, new aspects can be easily added. Type
information is left out of the objects and is used in the distributed system for
various purposes. Simpler views of the models create environments where the
construction of specific kinds of applications is easily performed. A visual editor
is described for one of such views - distributed multimedia applications based on
coarse temporal, spatial and logic synchronization.

Keywords
type categorization, multimedia composition, distribution, visual composition,
active objects.

1. INTRODUCTION

Programming (or authoring) multimedia applications is not an obvious task
and needs a powerful framework providing an environment where they can be
constructed easily and quickly. Some issues should be addressed and solved by
the framework:

The current state of the art in terms of equipments and signal encoding
standards is characterized by a constant evolution. Features are permanently
being added to the equipments creating new ways to handle data or interact with
other types of data. In terms of signal encoding, better tradeoffs between quality
of data and usage of bandwidth are also being obtained. This ongoing evolution
prevents the use of a static type categorization for multimedia objects if the
framework is to be used for a long time.

The framework should create an environment where the direct handling of
temporal based signals should be avoided. This handling is computational
consuming if performed by the application and most of the times useless for
authoring purposes. The framework should also reduce the dependency on
specific hardware by appropriate encapsulation. The set of authoring concepts
should be kept small yet powerful enough to grab all the possibilities an author
needs to use to compose applications. The current reality is the existence of
complex system demanding a considerable technical knowledge of the objects by
the author.

If distribution is also considered, some assumptions are not valid anymore.
Examples are object availability or the facilities to interact with objects or to
access them. On the other hand, it introduces new problems to be solved, such as
bandwidth of channels or delays in reacting to commands. The framework should
also solve these issues in an integrated way.

Still another aspect is the wide scope covered by the term multimedia
applications, ranging from simple hypermedia documents with a hierarchical
structure based on a text document, to more intricate relations including graphic
animated objects or virtual realities. Optimal solutions for one case can be
inefficient for others.

A solution to this problem, using type categorization extensively, is proposed in
this paper. The paper only addresses part of the overall problem (the script
language, and some implementation aspects are not fully described. See section
9). The solution is not unique for the entire problem. A common system
architecture with different views is defined. Each view takes into account the
specific characteristics of a certain kind of application. All views are based on a
single object model which includes the allowed interactions and the definition of
the active components. The paper is divided in three main parts: the following
section describes the system architecture and the motivation to define it. Part
two explains the object model. Both part one and part two are evolutions from the
corresponding parts in [23]. The third part describes one of the views -
multimedia applications based on coarse interaction between objects - and
presents a visual-based tool to interactively create the application. Section 8
discusses some related work and the final section draws general comments on
this work and on the future directions to be followed.

2. SYSTEM ARCHITECTURE
2.1. Motivation

Current frameworks for the construction of multimedia applications have
native data type objects in a tightly integrated form concerning the functions

available on the objects. New data type objects can still be integrated via modules
which know how to handle the data but offer fewer features than the native

objects [19, 20]. A first requirement for the system architecture proposed here is
the ability to recognize any kind of relevant function, for composition purposes,
regardless of the nature of the object.

A second requirement is the ability to use any kind of interaction between
objects both at data level (allowing for different kinds of configurations between
object components called sources, sinks or converters of data [23]) and at control
level (allowing for different kinds of participation other than triggering the start
of other objects or the user watching the "play").

Most of the current systems were built with a specific kind of application in
mind. The consequence of such an approach starts on the definition of the
authoring concepts and goes until the relations between the components (usually
using inheritance), emphasizing relations of certain features of the objects more
than others. A different kind of application would have other ways to relate the
objects between each other causing a reorganization of the inheritance chain and
a major change on the system. Most of the times the differences are just on the
way authors write specifications and not on the object model itself. Different tools
to build applications could reuse the basic objects, as long as a constructive type
schema for using their features is available. The system architecture described
here has such a typed vision of the objects.

The system must provide a very simple authoring conceptual model with only
the necessary features for the selected kind of application. The features must be
coherent, at type level, with a richer object model common to all views. This
creates an easy authoring environment which can be used by non-expert people
and still reuse a common system underneath. It is believed that multimedia
applications will use autonomous objects in a distributed world which are able to
handle data and have methods at interfaces to allow some degree of control.
Ultimately, these objects can be defined using any kind of technique (definition
of methods, software construction, etc.), but the way they are categorized with
the type schema proposed here, makes the system usable regardless of future
modifications or addition of features.

The last two main requirements are widely discussed on similar works and
concern the encapsulation of hardware dependencies and the use of active objects
to model the multimedia objects [8].

2.2. Architecture

The overall system architecture is shown in figure 1. Active objects implement
the basic components acting as sources, sinks and converters. They cooperate in
three different ways to accomplish the multimedia application:

(a) by transferring data streams from sources to sinks (possibly using
converters on the way);

(b) by exchanging control data between them; and

(c) by invoking methods on each other.

The data stream part (a) is somehow left out of the model. Data streams are
just typed entities which can be generated in ports of the same (or compatible)
type and are consumed by similar ports. A type space for them is defined with
relations of compatibility. In informal terms, compatibility here means the ability
of the port to handle the data encoding and the mechanisms to transfer it (control
methods associated with the transfer).

The other two ways, (b) and (c¢), form an

<« > % $ 9 Author abstract machine with certain operations (the
Ennn

Graphical methods on the components) and data flows

(control data). All this environment is strongly

Editor @7

typed, checked at run-time by the run-time
system and at compile-time (or specification-

Script time) by the tools available. All control data
= uses messages, called events, between the
components. Every event belongs to a type

«—>> @ and has associated data. Methods are
State aggregated using concepts which facilitate
Machine JL type checking and extensibility (see section 3).

A system-level type manager was used to
gather all the type information in the system.
This approach contrasts with others using
type models of object-oriented programming
Sinks, efc. languages. Some discussion of this issue is
done later.

TvyvipPrhe NMamager

Figure 1 - System Architecture]))
The abstract machine can be driven directly

by an application if the interactions are simple, or it can be driven by a state
machine generated from a script language, in more complex cases. It is expected
that more than one script language will be used for multimedia applications.
Some of the currently proposed ones [20, handle certain aspects more than
others and show limitations for certain cases [23]. However, if the abstract
machine is general enough it can support different classes of script languages.
Each class will correspond to a view of the overall system defined earlier.
Although building an editor (or compiler) capable of using all the facilities of the
abstract machine is possible, it would demand a high technical knowledge of the
system from the author. Instead, by restricting the concepts to the type of
application of interest, a simpler environment can be created.

The simpler environment of this paper, uses a graphical editor to interactively
specify and compose the application. The editor generates a script language (see
section 9) but could generate the state machine directly. Other kind of
applications, such as hierarchical documents spreading out from a root text object
(hypermedia style), would have different concepts on their editors.

As figure 1 shows, the type manager is used by all entities to make on-line
checks on every operation the author wants to make.

3. COMPONENT OBJECT MODEL

There are two levels of objects in this paper. Objects at component level, and
objects used at authoring level. Objects at authoring level are simplified views of
the others but reflect most of their structure. This section describes the
component level objects, and the next section covers the others.

Component objects model sources, sinks and converters.! The model described
here is based on [24] and each object has a set of typed interfaces. This approach
is in line with the Reference Model of Open Distributed Processing [13], and
differs from those based on object-oriented programming languages where each
object has a unique interface. With this approach it is still possible to think of an
interface as composed of different parts assembled by the inheritance relation
between objects. However, such use binds the particular meaning of inheritance
of code to the unique sub-typing relation object-oriented programming languages
have, preventing other useful usages.

A multi-faceted approach was used instead. Each component object is
composed of different status. A status is a set of internal state with associated
logic. There are status for speed, geometry, brightness, volume, etc. If an object
does not support the status for volume, for instance, it cannot interact with the
exterior to change the value controlling the volume of the sound produced. In
terms of the computational model, status does not introduce any new concepts
but just a way to relate interfaces. A status forms a close set of features
associated with some particularity of the system. However, it should be possible
that the logic associated with a certain status could influence other status. This
is an internal issue of the object and the programmer is free to implement
whatever influences he wishes, as long as the necessary communication
mechanisms are supported. An example of cross-influence is a status related with
bandwidth of a channel (quality of service) generating a new geometry for the
object to reduce the amount of data transferred, and sending the new geometry
information to other objects that are interested. Another internal issue is how
inheritance can be used to form status. It is a feature related to the construction
of objects not relevant at composition level.

IA convertor is used to link incompatible sources and sinks without modifying them, or to
provide access to the data stream using another data type (for instance, grabbing a frame from a
video stream). Whether the convertor is a first class computational object in the system or a
facility bound to the communication infrastructure, is not so relevant. In this paper the
important feature is the existence of an operational interface to control it.

There is a set of operations associated with
Inferface each status - its interface - and a set of event
types (Figure 2). For instance, a timestone event
Event type would be associated with the annotation
status. The logic of each status can be triggered
by internal changes in the object or by external
invocations on operations associated with the
status. The type manager holds information
relating status-events-interfaces and which

status an object supports.

Figure 2 - Internal structure of a
component object

The complete interface of a component object is thus the set of all interfaces
of the statuses it supports.

It was already said that objects interact. Interaction consists of invoking
methods on others and sending events to others. The traffic of events is based on
interests: objects register interest on the occurrence of some kind of events in
other objects. They can be interested on changes of speed, or even on when an
object finishes displaying the stream of data.

This concept of status is very useful for four main reasons:

(a) avoids the need to carefully design a common interface to all objects in
order to use them efficiently. There is no need to define empty procedures (such
as SetVolume for slides), or overload operations with a less intuitive meaning;

(b) avoids the requirement of having to design the interface of a medium type
in such a way that it will cope with any future evolution of the technology of the
components (new features available) minimizing its disturbance on the overall
system. With this constructive type schema an old type, with an added status, is
all that is needed;

(c) allows that tools made at a certain version of the system can still work with
objects having features not known at that time.

(d) multimedia systems can be constructively built with objects being added as
they are needed.

Just as status and events are typed entities, so are sources, sinks and
converters. As it will be seen, a multimedia object is ultimately a combination of
cooperating sources, sinks and converters. A type in this space represents a
certain set of status and the form of dealing with the events (i.e., the logic). For
instance, a certain video source which would never generate the event
representing the end of the movie (leaving that task for the sink), would belong
to a different type from a source that generates this event after sending the last
bits of the stream. This type information will be helpful in deciding if two
components can be connected together, and is stronger than just the statement of
compatibility between data stream types.

The system being built has special component objects which are templates for
the instances of the type of source, sink or converter wanted. It is a similar
technique as the concept of factory in ODP [13] and ANSA [1]. The instances
created will have some context data, called property data, regarding the specific
object (name of files, geometries, references to interfaces of data stream ports,
etc.). The template object only supports one status, ComponentLife, having state
variables and the operations prepare and dismiss. prepare creates an instance of
that type with specific property data values as initial information. The invoker of
the operation is the only user of the new instance and can share its usage with
other components if so wishes. dismiss is one way of aborting that instance.

Pla

StoI}Jl E ; All instances of the components have
Inform () the status Context which gives the
Destroy () basic functions for the system to run.

So, all component objects have, at

ReceiveEvent ()
least, these functions. The reference to

RegisterStatusInterest ()

UnregisterStatusInterest () %ts . .inte'rface provides ‘?niq“e

identification of the component in the
Ev_Ready system. Figure 3 shows the operations
Ev Start and events associated with the status
EV:Stop Context. Apart from the obvious
Ev End operations to play, stop and destroy the

instance there are operations to receive
events (a kind of dispatcher), to provide
the references of interfaces of other
status the object supports, and
operations to allow other objects to
register (and unregister) interest on event types. As this context exists on all
objects the events associated with it are implemented by every component. They
are Ev_Ready (as a reply to the operation prepare because the operation is not
blocking to the caller), Ev_Start (to allow others to know that the object started),
Ev_Stop, and Ev_End (to announce the termination of a play).

Figure 3 - Composition of the
Context status

Other statuses are defined and are used to handle specific aspects of the object.
For instance, the status Volume has the operations setVolume, changeVolume,
and getVolume, and can send an event of the type Ev_Volume with the relevant
data. A more complex status is the Annotation. Annotations (or timestones) in
objects provide them with an internal structure for composition purposes2.
Annotations can be subdivided in different subtypes (still visible to the type
manager): subtype A, subtype_ B, etc. with data values such as "yellow car

2The way this is really implemented is not so relevant. The data stream can be considered
unstructured and out-of-band (or in-band) signalling can be used to transport the annotations,
being identified by some component responsible to send the events.

passing", "plane taking off", "chapter 3", "frame 34012", etc. When the object is
playing and an annotation is passed, a corresponding event can be sent to any
object that showed interest on it. The event is Ev_Annotation with the
corresponding values for subtype and values. The status Annotation has
placement operations to access the position of the object presentation from the
exterior - gotoAnnotation, getlLocator - and specific operations to register
(unregister) interest on the events.

It should be noted that this object model fits well in standardization efforts
such as MHEG [11], or in other models constructed using object-oriented
programming language type models [18]. What is highlighted here is the way the
system looks at the operations available on the objects. For instance, MHEG has
a corresponding set of operations analogous to the ComponentLife and Context
status called preparation and presentation actions. Furthermore, it has a flat
type space of actions (methods) which can be seen through the glasses of this
type model with all the advantages described earlier.

We claim that this model, associated with a powerful script language (not
described here), is general enough to implement most of the distributed
multimedia applications.

4. MULTIMEDIA OBJECT MODEL

The simpler set of concepts defined on top of the general component model is
used to construct multimedia applications based on coarse spatial, temporal and
logic synchronization between multimedia data types. The main concept is a
MM_Object (multimedia object) which is an active entity that starts, has a
lifetime, and ends, handling, or not, multimedia data [23]. Figure 4a shows the
simplest object with the events Ev_Start and Ev_End, thus unable to interact at
a finer grain than the whole object. Multimedia objects are also created from a
unique template (common to all objects) using a status called Life. Life has
similar operations to those of ComponentLife, but includes the identification of
the components to be used and their configuration in terms of media streams.

Multimedia objects are also typed entities. A type in this space represents a set
of status implemented by the object, and a list of components which can be put
together to generate it. For instance, a video of a certain type can be originated in
a disk and be displayed on the screen of a workstation. The sink could be
changed to a TV set sink with the same kind of features (status). However, if the
video comes from a camera, then it is categorized as a different multimedia type
because the camera does not support changes in speed (slow down reproducing).
In the first case (changing from the screen of the workstation to the TV set) both
sinks must have an identical way to handle the aggregated logic of the respective
status.

Multimedia objects also have the same structure of status and events. The
difference is that the handling can be done by the multimedia object itself, or can
be delegated to a component object. This is totally transparent to the user of the
object because he asks for references to interfaces and the ones he is given back
are really the ones on the components. An example of direct handling by the
multimedia object is the Context status whereas the handling of Speed is
generally performed directly by a component. In complex cases, with
configurations different from one to one, the status in the multimedia object
could have to perform consistency checks on the statuses of the components it
controls.

Thus, the operations offered by the multimedia objects are directly related
with the status supported by the components and so are the events. There are
two main different kinds of events for composition purposes: deterministic
(mostly related with annotations) and non-deterministic (all the others).
Deterministic events are strongly bound to objects and always occur in the same
way each time the object is played. Non-deterministic model actions that might
or not occur (such as user intervention). Figure 4b shows a multimedia object
with some deterministic events (bigger arrows) and some non-deterministic ones
which can be triggered by buttons inside the object, or system features such as
changes in the quality of service.

Ev_Start Ev_End Ev_Start Chapter 1 Chapter 2 Ev_End
A A A A Planofthe city g Sightseeing g
A A

Figure 4(a). Simplest MM_Object in Figure 4 (b). MM_Object with
terms of composition different types of events

5. TYPE MANAGER

The type manager implemented is a general repository of types and could well
be implemented using the architecture of the X.500 Directory Service [4]. The
main difference towards other proposals for multimedia environments was
already stated and is the decision of not using the inheritance technique of
object-oriented programming languages. Firstly, because inheritance relates
types binding the meaning of reusage of code to it. This aspect was avoided in [8]
for instance, by defining all upper classes as abstract and, in fact, what is being
inherited is specification of interfaces. Secondly, because there is the need to
understand relations in a wider scope relating entries belonging to type spaces
eminently different. Why then should a single kind of relation be overloaded with
different meanings depending on the objects, instead of just having a different
relation for each case? The meaning of a subtype relation will be shared by all
entities that handle it. Finally, because if an object-oriented programming
language type model was adopted, access to type information at system level

would have to be made using the specific language or a replica of the model
would have to be created maintaining all the semantics defined in the language.

The current repository of types has type names as entries and defines a set of
attributes for them: attributes are seen as property data related with the types (a
default geometry or configuration for multimedia objects, for instance), and as
types of relations between the types to support compatibility rules (e.g., a certain
component can implement a certain multimedia object, or two data streams can
be connected).

The type manager is used by the entire system: the graphical editor uses the
information stored in the type manager to know about the existing types of
multimedia objects available to the author, and to validate variations to the
existing objects made by the author; the compiler uses the type manager to
perform consistency verifications during the compilation, so as to prevent most of
the errors to occur at run-time; the interpreter of the state machine, and the run-
time system use the type manager to know the specific codes assigned to the
types used and to perform run-time checks. The type manager is also used to get
signature information about events or operations which are not built into the
system (because they were defined at a later stage).

The type manager stores information about the following types:

* multimedia object types . event types
* component object types . operation types
* data stream types . annotation types

+ status types

The information on operation types, for instance, is very similar to the one
existing in computational models such as ODP.

6. COMPOSITION MODEL

In this approach there is only one composition model with the distinction
between the control part of the application, which uses events and operation
invocations; and the data part, related with the flow of the data streams and
component configuration.

Events and operation invocations (which were restricted to one way flows of
information - requests without replies) are atomic actions in the composition
model. A model with such characteristics can be appropriately specified with a
process algebra type of language. A first proposal for a language, described in
[22], used an adaptation of LOTOS [3, 14] taking advantage of its aggregation
between data types and process algebra. A discussion of the advantages of such a
choice is out of the scope of this paper. Some of the disadvantages motivated the
definition of different operators with semantics more suited to the specific

requirements of multimedia interactions. This is a currently on-going work and
will be reported in the near future.

The same approach of the object model is followed here: a general composition
model and simplifications for specific views. In order to understand the features
of the graphical editor a brief description of the simplified model is done here.

There are basically two kinds of compositions which then have multiple forms
by parameterisation: parallel and sequential composition. Parallel composition
relates intervals in terms of their lifetimes (a lifetime of an interval is the period
when the interval is active, for instance, an object playing). A lifetime can
possibly be infinite if there is a loop inside. The parallel operator can be
parameterised:

* in terms of the semantic of termination - the parallel finishes when the first
finish, or the last finish, or a disjunction (or conjunction) of a certain set of
operands finish;

* in terms of the influence in the duration of the objects - all objects keep their
natural duration, should change to the duration of the biggest, or the
smallest, or to the duration of a certain operand;

* in terms of inter-influence between the operands - while the relation is active
they should exchange information about a certain status (speed, geometry,
etc.)

Sequential composition is a way to express causal relations. It is a view of the
composition based on points. The semantic states that a certain condition is only
active after another condition happens. In practice it is a waiting state for an
event from another object.

There is an important feature associated with composition which makes the
editor extensible to status it does not know about. A sequential relation can be
just that (a relation), in which case the object is waiting to receive the
corresponding event from another object; or it can have an action associated with
it, in which case the event is not sent but the action is called. This feature works
in a similar way for the parallel case. Most of the other proposals bind a meaning
(start or play) to a sequential relation. Thus, inter-influences can be expressed by
just having the status, in which case all events associated with the status
circulate between the operands, or by denoting an action (belonging to the
operational interface of the status), in which case it is the operation that is
called.

7. VISUAL COMPOSITION

A graphical editor was built to ease the task of application authoring. The
concepts were restricted to the essential and techniques of drag-and-drop were
used. Figure 5 shows the appearance of the editor with a small specification
written in it.

Point
Compozition

Interyal

File Compozition

Object FRange Event

Aggregate

Configuration Properties Fun

Tleterministic
Events

! i
/l Comment.s I\E

17 ; N

| Downtown

=

\

1
1
1
+
[
[y
[y
*+

g [

— -
*|Opening Hours | .

i 0 A_1=a
|| Historical Buildings Iﬁasml\a

~—

Hon-Determ.
Events

H

Ef| STOP |

! i
|Back3round InFo|

STOP
NO EXIT

| Museums | | Horuments | | HO EXIT |

-

Figure 5 - Graphical Editor

The editor consists of a command menu bar, a working area, and a palette for
events, operators and the most common multimedia types. The author begins by
dragging a multimedia object from the palette (lower part, beneath the black
separator) and dropping it in the working area. The new object gets a default
configuration from the type manager. Customization can be made using the
Configuration and Properties menus (Configuration permits alterations to the
sources, sinks and converters to be used, and the setting of their topology.
Properties is used to define the name of the files, the various geometries, etc.).
The dropped objects get their Ev_Start and Ev_End events automatically. Objects
can have ranges defined in them. A range was a syntactic feature to make the
algebraic expressions in the language more readable, but was maintained.
Ranges are separated by annotated events (deterministic nature). Further events
can be inserted on the objects by dragging them from the palette. Deterministic
events have a bigger icon than non-deterministic ones.

Parallel and sequential composition are also created with the drag and drop
technique and then parameterised by the menus Interval Composition and Point
Composition. The menus Object, Range and Event are used to do simple
operations such as moving icons, changing their sizes or names, or deleting them.
There is an aggregation feature to combine different objects in a composite one (a
way of refinement). Again the drag and drop technique is used and the menu
Aggregate sets the corresponding relations between events belonging to internal
objects and those defined to be visible to the exterior. Finally, the menu Run is
used to interactively run the specification.

The example shows a piece of video about a town, showing the downtown
during a first portion, then historical buildings followed by a traveling in the
castle. The parallel between downtown and opening hours specifies that a text
containing the opening hours of the shops should be displayed while showing
downtown. Some audio comments about the downtown and the historical
buildings are heard. The video only starts the castle sequence after the comments
are finished (the reference to the event in the video is just a way to reference a
point in the video object). When the castle part is shown, a certain point deserves
some audio explanation of background information. This is specified by a
sequence operator from that deterministic event. Finally, there is a non-
deterministic event which is active while the historical buildings are shown (The
precise point in the object is irrelevant, and the notation only means any point
between the two adjacent deterministic events). Every time the event happens (if
it does at all) textual information about museums and monuments is displayed.

8. RELATED WORK

The topics of multimedia composition and object modeling are usually
discussed separately and most often the contact points reside on the
identification of the necessary interfaces to support the composition model. The
main reason is that composition is mainly understood as simple temporal (and
sometimes spatial) synchronization. If logic composition is also wanted or if some
decision taking is dependent on the type of the objects both topics must be
defined in the same framework. A representative example of such an
environment is [17].

In the topic of multimedia composition alone most of the systems reported
show certain limitations that the proposal of this paper overcomes. Process
algebras decouples the description of the application from any predefined
structure such as a hierarchy [25, 20], or a timeline [5, 10, 8] widening the scope
of applicability to different kinds of applications. Having logical events as atomic
actions creates the ability to perform future editing facilities on components
which are hard (or impossible) to achieve when using Petri Nets [16, 21, 26],
timelines, synchronous process algebras [27], or final formatted notations such as
MHEG. [9] is an example showing a peculiar way of supporting editing facilities,
based on the TEX’s glue concept. It should only be seen as another proposal for
object composition algorithms as it lacks other aspects of multimedia composition
to be considered a complete multimedia framework.

In the topic of multimedia object modeling most of the proposals try to
completely define the interfaces of the objects, making the model static with little
possibilities for futures extensions or modifications. Nevertheless, constant
evolution is a key issue in multimedia. The object-oriented technique is the most
popular choice using inheritance [18] or specializations and meta classes [15].
Such choices make the framework vulnerable to major disturbances if the
changes are considerable. Constructive approaches can simply create new

versions of objects out of the set of available interfaces and still work with old
ones, as the type information is outside the object. A notable example of such an
approach is similar to the one in this paper [7] and objects are defined as sets of
specific interfaces. It lacks however a connection to a type model in order to use
that information in the tools. The MADE project [2] goes further in the definition
of objects and provides visibility of features available inside of the objects (e.g.
concurrency mechanisms). It is perhaps a far too long way in specifying
composition as it can introduce implementation details. The MHEG notation can
fit well in a constructive framework because it only states how actions can be
defined, and the user is free to define the ones of his needs.

[18] integrates both topics. However, three composition models were defined
(data flow, activity and temporal) with some overlapping of concepts. This can
make consistency checks difficult. The data flow composition model merges what
was called here data steam types and part of the control data. The temporal
composition model uses a timeline based technique (which has inherent
limitations) to determine durations of objects. It conflicts with the reference point
based description used in the activity model (this one broadly similar to the one
of this paper). The choice in this paper was to parameterise the parallel operator
with indications of relative size of operands, keeping it concise with the reference
point approach.

Finally, visual composition was proposed in [17] using a point based notation,
and a less rich set of choices of compositions (for instance the sequential
composition is always associated with the action start). Petri net based visual
programming can also be found in [6].

9. CONCLUSIONS AND FURTHER WORK

This paper proposed a general solution to create frameworks for the
construction of distributed multimedia applications. The constructive approach
based on status in conjunction with a system wide type schema make the system
extensible and sufficiently general for a wide range of distributed applications.
The existence of conceptually simple views of the framework permits an easy
environment for the construction of specific kinds of applications and still reuse
general multimedia components in the system. The type schema proposed
requires very little from the objects allowing the usage of standard objects such
as MHEG, or similar (providing a minimal shelf is built). The existence of type
information at system level allows the tools of the framework to produce correct
specifications of the applications and is by no means a restriction to the process
of software construction. The meanings of type, subtype relation and
compatibility rules are valid in a smaller scope, only shared by the components of
the system which have to handle them. The information is kept outside the
objects not influencing their construction.

Important issues are still unfinished and not entirely clarified. The prototype
graphical editor needs some completing work in aspects of interactive test of the
specification. Data streams are still implemented using RPC operations instead
of new concepts of continuous data supported directly by the infrastructure.
There is little integration between the concept of status and controlling operation
interfaces on the data stream types. If statuses can also be defined inside the
controlling part of the data streams the composition can be richer.

Issues not covered so deep in this paper which need more clarification are: the
complete definition of a script language fitting the generality of the object model;
the concrete experience in using high-speed networks covering issues such as
quality of service, time resilience of data compressing algorithms; topologies
different from 1:1; and dynamic reconfiguration of data flows and topologies.

REFERENCES

1. ANSAware 4.1. System Programming in ANSAware. Doc. RM.101.02. February
1993.

2. F. Arbab, I. Herman, G. Reynolds. An Object Model for Multimedia Programming.
Eurographics'93.

3. T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language
LOTOS. Computer Networks ans IDSN Systems, 14:25-59, 1987

4. CCITT Rec. X.501 (ISO/IEC JTC1/ SC21 ISO 9594-2), The Directory Models,
March 1988.

5. S. Christodoulakis ans S. Graham. Browsing within Time-Driven Multimedia
Documents. Conference on Office Information Systems, pages 219-227, March 1988.

6. S. B. Eun, E. S. No, H. C. Kim, H. Yoon, S. R. Maeng. Specification of Multimedia
Composition and a Visual Programming Environment. ACM Multimedia 93, pp.
167-173.

7. G. Flurry. Multimedia System Services for a Distributed Environment. Proceedings
of the 4th Workshop on Oper. Syst. and Network Support for Digital Audio and
Video, Nov 1993.

8. S. Gibbs. Composite Multimedia and Active Objects. Proceedings of the
OOPSLA'91 Conference, pp. 97-112. Association for Computing Machinery, 1991.

9. R. Hamakawa and J. Rekimoto. Object Composition and Playback Models for
Handling Multimedia Data. ACM Multimedia 93, pp. 273-281.

10. M. Hodges, R. Sasnett, and M. Ackerman. A Construction Set for Multimedia
Application. IEEE Software, January 1989.

11. ISO/IEC JTC 1/SC 29/WG 12. Information Technology - Coded Representation of
Multimedia and Hypermedia Information Objects, February 1993.

12. ISO JCI1/SC17/WG8, SMSL. Standard Multimedia/ Hypermedia Scripting
Language.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

ISO/IEC JTC1/SC21/WG7 N755, Information Technology - Basic Reference Model of
Open Distributed Processing - Part 1: Overview and guide to use, January 1993.

ISO 8807. - Open Systems Interconnection: LOTOS - A Formal Description
Technique based on the Temporal Ordering of Observational Behaviour, 1987.

W. Klas, E. J. Neuhold and M. Schrefl. Using an object-oriented approach to model
multimedia data. Computer Communications vol 13, no 4, May 1990, pp.204-216.

T. Little and A. Ghafoor. Synchronization and Storage Models for Multimedia
Objects. IEEE Journal on Selected Areas in Communications, 8(3):413-427, April
1990.

V. de Mey et all, Visual Composition and Multimedia, Procedings Eurographics '92.

V. de Mey and S. Gibbs. A Multimedia Component Kit. ACM Multimedia 93, pp.
291-300.

Microsoft. Microsoft Multimedia Development Kit. Multimedia Viewer Developer's
Guide, 1.0 edition, 1991.

S. Newcomb, N. Kipp, and V. Newcomb. The HyTime: Hypermedia/Time-based
Document Structuring Language. Communications of the ACM, 34(11):67-83,
November 1991.

N. U. Qazi, M. Woo, and A. Ghafoor. A Synchronization and Communication Model
for Distributed Multimedia Objects. ACM Multimedia 93, pp. 147-155.

P. F. Pinto. An Interaction Model for Multimedia Composition. PhD thesis,
University of Kent at Canterbury, 1993.

P. F. Pinto, P. F. Linington. A language for the specification of interactive and
distributed multimedia applications. Int. Conf. on Open Distributed Processing
1993, pp. 217-234.

P. F. Pinto. Interface Definitions for Multimedia Interfaces. Palantir Internal
Report n.092, University of Kent at Canterbury, October 1992.

J. Postel, G. Finn, A Katz, and J. Reynolds. An Experimental Multimedia Mail
System. ACM Transactions on Office Information Systems, 6(1):63-81, January
1988.

B. Prabhakaran and S. V. Raghavan. Synchronization Models for Multimedia
Presentation with User Participation. ACM Multimedia 93, pp. 157-166.

J. Stefani, L. Hazard, and F. Horn. Computational model for distributed multimedia
applications based on a synchronous programming language. Computer

Communications, 15(2), Mar 1992.

