
1

Sharing Multimedia Information: a basis for assisted remote training

Luis Bernardo and Paulo Pinto
Inesc/IST, R. Alves Redol, 9 P-1000 Lisboa Portugal

{lflb,pfp}@inesc.pt

Abstract: Multimedia cooperative work has several requirements not supported by existing
shared systems. A multimedia distributed platform, DIMPLE, suitable for constructing
interactive and distributed multimedia applications, was enhanced to support shared
multimedia applications. This paper describes these enhancements and presents a typical
application of shared synchronized access to an information retrieval system. The open
nature of DIMPLE and its constructive type schema were important to incorporate an off-
the-shelf videoconferencing system with minimal changes.

1. Introduction

Most of the multimedia applications reported recently are concerned with videoconferencing systems;
define frameworks for cooperative work (CSCW); or tackle the problem of information retrieval in its
various aspects of synchronization and presentation.

One important issue was always neglected: the support for more than two users in a very versatile
way. More specifically, it would be good if users could join "working sessions" and leave as they please.
Once in the session they would participate synchronously with everybody else that was present, and
applications would not be aware of such.

A working session can be anything from videoconferencing to sharing any kind of application even
(and specially) if it is a multimedia information retrieval system. In this case, users can see the same
information at the same time and browse as if only one user was in the system. This is particularly
interesting for applications in which a tutor supervises some learning process. For instance, the
replacement of a spare on an industrial machine. The maintenance person would learn from a multimedia
document. If (s)he has some doubts (s)he could start a shared session with the support responsible
person of the manufacturer. The support person would follow the session and would explain further
details using the videoconferencing, or would influence some browsing decisions. The support person
would join exactly at the place where the problem was and could leave anytime after that (joining again,
etc.).

For non-multimedia data a well-known technology to share applications is SaredX. However, as it
works at rendering level, it is prohibitive for multimedia applications due to the amount of data. Other
aspects of SharedX are also a handicap, as for instance the use of TCP for continuous real-time signals.

Furthermore, if the basic concept for a user is not suitable, the action of joining another user to the
sharing system can create problems at communication level and also at control level inside the
application. It creates unnecessary complexity.

This paper describes a shared multimedia application built on a distributed multimedia platform,
DIMPLE. The DIMPLE platform is an extended version of the architecture described in [8] and in [9].
The multimedia support is given by the addition of multimedia sockets and plugs to the ANSAware
system [2]. The concept of a multimedia object is unique, regardless of the number of end points it has
internally, giving a unique control interface to the application. Users can just plug into the existing
objects of an application sharing all the current environment of the application.

2

2. The DIMPLE Platform: Multimedia and Sharing Extensions

2.1. Object Model

Object-based technology was used to define multimedia entities is
and the model is an extension of the one presented in [9]. A
multimedia object, a MMobject, is formed by a set of component
objects (sources, sinks and filters) and by a manager which offers a
unique interface to the entities using it (see figure 1).

There is a neat distinction between control of the object and the
(multimedia) data the object is able to transport. Internally, the manager reflects this distinction by being
subdivided in the synchronization manager and the topology manager. They are responsible for the
control of the MMobject, and for the multimedia data topology, respectively.

2.1.1. MMobject control

The control of the MMobject is performed via its unique interface, and (possibly) mapped internally
onto the control interfaces of the components. The control interactions are made of events and actions
between objects. Actions are submission of invocations. Events support the returning of values and the
notifications of changes to the internal state of the object. Control operations are not so time critical as
multimedia data transfer, and have different interaction requirements. An RPC-like mechanism is used
(the ANSAware plugs and sockets).

The platform was conceived to deal with a wide range of entities, with different control interfaces. To
avoid the use of operation overloading, that results unnatural to the programmers, the actions, related
events and internal states were grouped in statuses. All MMobjects (and component objects) have a
basic common set of statuses (Life and Context statuses), and further statuses which are dependent of
their types (audio objects have volume status, video objects have brightness status, etc.). The basic
group supports the instanciation and the basic management of the objects. The interface of the Life
status has an action to instantiate the object, Prepare, and another one to abort the instance, Dismiss.
The interface of the Context status supports the play and stop of the object; its destruction; the
registration of interest in events; the provision of references to the other status of the object; and a
general event dispatcher. It provides a unique identifier to the MMobjects in the platform. Components
also have the Context status and have a similar instantiation method, reunited in LifeComp (the tasks
performed are slightly different from the ones for MMobjects).

The addition of more status to existing objects is allowed because all the type information is checked
at run-time. When a new set is added, a new MMobject type is, in fact, created, and it should be
conformant with the old one for the common statuses. Applications should work even if a status they
need is not supported (this is consistent because new statuses add no synchronizing features and simply
side control features, such as volume, etc.). It is obvious that old applications do not make any use of
new status. With this mechanism, evolution over time is guaranteed.

The synchronization manager is responsible for managing the status whose functionality is distributed
by several components. However, if a status is only supported by one component (e.g. the speed status in
a video source) then the status management will be delegated to the component. For the controller of the
application it is irrelevant, because he receives an interface reference that is called transparently, without
knowing what is the real server he is using.

source sink

manager

Figure 1 - MMobject architecture

3

2.1.2. Multimedia data

Multimedia data is an internal matter of the MMobjects and is transported using connections between
sources and sinks (possibly with filters in between for data conversion). The topology manager manages
all the necessary issues, acting as a Binding Object (as defined on the computational model of the RM-
ODP[6]). It offers one controlling interface to the exterior, topology status, and uses internally some
control interfaces of the MMobject components, port status. The port is described now but for the
topology it is necessary to introduce some concepts, and it will be described later on. All the controlling
operations are RPC-like for the reasons explained above.

Sinks and sources are connected to transport multimedia data using high-performance channels
(HPC), represented in figure 1 by small rectangles in the components. Port status is used to control these
HPCs. HPC are typed entities and polymorphism was used to define different controlling. They all
descend from port, which has the operations (unchanged by subtyping):

Connect (...)
Disconnect (...)

These operations allow the connection and disconnection of HPC between component pairs. They can
also be used for multipoint connections, formed by a set of 1:1 relations with a common HPC control.

The sub-type categorization of the channels reflects two levels: transport and presentation. The first
divides the space according to the transport algorithms used. As a general rule subtypes add a
connectProtocol operation to the port status to establish the HPC. Some examples are:

tcpport (uses TCP/IP directly)
udpport (uses UDP/IP directly)
xtpport (uses XTP directly)
ansaport (uses ANSAware channels as HPCs)

The second level of type definition is used to characterize both the kind of information which is
transported over the connection and the real-time enforcing algorithm as well. Encoding formats can be
G.711 audio, mpeg video, jpeg pictures, etc.; Enforcing algorithms include the way data is exchanged (if
sources are pushing data, or sinks pulling it), the format used to transport data (MPEG interchange
format, or private), etc. The current system has an injective relation from this second level to the first
(MPEG private video only uses UDP) but it need not be like this. Examples of this second level are:

G.711 (uses a private frame format with G.711 audio)
mpeg_OSI (uses the MPEG interchange format)
mpeg_private1 (uses a private frame format for MPEG with a real-time protocol)

Type checking is performed at run-time, with the help of a Type Repository. Compatibility rules are
equality of types, or other isClassOfPortTypes relations stored at the Type Repository. The system
checks if compatibility exists before connecting ports (and HPCs after them).

This type schema is very powerful and open because, as it will be seen on the implementation
example, it can integrate alien systems very easily. The example uses the transport facilities of a video
conferencing system (called Berkom-MMC [1]) for the audio, i.e., Berkom-MMC acts as an HPC
channel. The integration consisted of the definition of another port, called mmcport, and its Connect and
Disconnect operations use the MMC audio transport as its HPC.

2.2. Sharing Objects

The extension to a shared environment is straightforward. As HPCs are MMobjects´ internal matters,
the only thing it is needed is to allow several connections between a source and various sinks, for
instance (figure 2). Connect and Disconnect are present on every port of the component objects, and
they support the dynamic control of connections between ports.

4

This new view of MMobjects introduces some requirements to the object model, at both the
MMobject synchronization control and the multimedia data control levels.

2.2.1. MMobject synchronization control

In terms of general synchronization control, nothing is changed: control is exercised via the set of
status supported by the MMobject (and its components) and the shared object is essentially the same

with a unique interface to the exterior. The new
component control statuses that are created are
dealt with by the MMobject manager, internally
to the object. Specific control, however, is not so
simple. Certain aspects used to be handled by
just one component (delegation) in the unshared
version and now a cooperation between
components must exist. This is still hidden to the
exterior because the controller of the MMobject
used to have a reference for an interface and
continues to have one now (but probably the
server is the MMobject itself).

A different issue happens when the
application needs to control the various users in
the system independently. There are several

examples: the presentation of a document with the language of the text and the audio objects selected
individually per user; a floor control algorithm in a videoconferencing system; the semantics of a user
token request button; etc. The approach taken was to avoid having component visibility from the exterior
as much as possible, making the scale up of the system dependent on the ability of the MMobjects to
control new users. All the situations implemented can fall into three categories:

• the relevant commands can be described using some kind of language (for instance relating
properties of the components to link with object properties selecting the language). Users are
distinguished by properties.

• the relevant commands can be expressed in high-level policies selected through the unique control
interface (the floor holder gets its audio with a higher volume). There is no awareness of users.

• Some specific control status (operations and events) are parameterized by the user id (for instance
the machine name) when this information is needed for the specific algorithms.

Internally to the MMobject, “user connections” (represented in figure 2 by the dotted lines) would be
seen by the MMobject manager as an array of destinations (users) and a related array of interfaces.
Different distributed algorithms use these arrays to perform their tasks. Whether or not all the possible
situations can be handled in this way, and do not require the components to be visible to the exterior of
the MMobject, is difficult to say.

2.2.2. MMobject topology control

If the control of the MMobject topology was based on individual components, it would have been still
possible to manage a set of possible destinations (user sites) but would have been a complex task. There
would have been the need to control every individual component instantiation and connection.
Consequently, the knowledge of the current destinations would have had to be external to the MMobject.

To simplify this task, it was introduced a level of abstraction to describe the degree of replication of
each component. Taking the example of figure 2, the MMobject is built by a new sink and the same

Figure 2 - MMobject shared by two users

5

source for each new user. The source is shared by all users (so it has only one replica independently of
the users), and the sink has one replica for each user. So, the topology control can be done in user terms
and derive the corresponding connections based on the replication level of each component. It is a similar
approach to the subsection above making users visible and not components.

Various replicas of the same component type can be seen as belonging to a component array. This
array simplifies the handling of the topology operations. For instance, when a component has a replica
for each destination, then it is just as if it has a “single” connection to the array, in terms of MMobject
topology control. Building and destroying individual components is just aggregating or separating the
elements with regard to the “single” connections. The topology status offers a set of operations to
control the topology including adding and removing users (actions add_destination and
drop_destination).The MMobject reacts according to the component array type and all components that
need different replicas for each user have new components instances created.

The degree of replication of a component per destination (user) can be classified in three types,
reflected also on the component array types: if the component only has one replica, independently of the
number of active destinations, it is called “single” (for example a video database source); if the
component has a single replica for each destination it is a “replicated” component (for example a local
video window in a video distribution system. See figure 3a); finally, if the component has N replicas per
destination it is a “bi-replicated” component (for example a local video window in a video conference
system). The bi-replication is needed because if a replicated source that broadcasts to every destination
must be connected, then a sink per destination for that particular source is need (see figure 3b).

These component arrays support the definition of an arbitrary complex dependency between the
number of destinations and the internal structure of the MMobject. Figures 3a and 3b show two of the
most representative cases: Various users accessing a common document (each sink is a replica) and a
videoconferencing with sources for each user (audio, video, etc.) and their sinks for each user (including
the local one).

Source Sink

host A

host B host C

SinkSink

Figure 3a - video multicast MMobject

Source

host A

host B host C

SinkSinkSink

SinkSinkSink
SinkSinkSinkSource

Source

Figure 3b - video MMobject in a videoconference

The use of component arrays solves almost all the problems encountered. Special hardware devices,
however, have specific features which do not fit in such a regular handling of the problem. For instance,
the XVideo board from Parallax insists on having a video window present to be able to grab the frame.
For this case, there is no need for a local sink. If a suitable notation to describe this topology constraint
is not found, a lower level interface would have to be provided giving component visibility to the exterior
of the MMobject (This issue is still under research).

Internally to the MMobject, the add_destination and drop_destination actions of the topology status
are mapped into: (a) calls to the Prepare (LifeComp status) operations on component template servers to
create instances; and (b) subsequent calls to the Connect operations of each one to create the binding
between them (performed internally by the connectProtocol to create the HPCs). The topology manager
gets to know the port status references of the components from the return parameters of the Prepare
operation. It could also obtain it via the Inform operation of the Context status, as with any other status.

6

2.4. Using the control features with a specification language

The exchange of control action invocation and flow of events between MMobjects (i.e., the
application itself) can be efficiently described using a process algebra based language. Figure 4 shows
the structure of language used to define the applications, and the structure of the MMobject declaration.

The language was inspired on LOTOS. The ADT part was used to describe the type information of
MMobjects and components. An MMobject is also a process in the algebra and the behaviour
expressions define the rules for synchronizing the applications. It can have a prefix form for a causal
style of specification, or use a more structured notation (parallel, enable, etc.) to have more powerful and
concise specifications [8]. The ADT part and a set of space names provide a strong type checking
environment [9]. The declaration of interest in receiving events is implicit in the language: if the user
specifies an expression that includes an event, then there must be a registration to that event.

The topology (2.3.2) is directly described in the MMobject declaration part. It includes the definitions
of the “component arrays” used, and their replication degree:

• • Source name type specifies a “single” source
• Sink name type [] specifies a “replicated” sink
• Sink name type [] [] specifies a “bi-replicated” sink

The link expression specifies:
! a list of pairs of components plus ports names (that may be omitted if there is only one port per

component); and
! an optional expression that can be used to define additional conditions (ex: link to every sink

except the one associated with the destination of the source).
The inclusion of port names in the expression is used for “strange” connections, such as connecting

the left output channel of a stereo output component to the input channel of a mono input component.

Figures 5a and 5b contains the declaration of MMobjects showed in figures 3a and 3b. The simplicity
is notorious.

Fig. 4 - Language structure and MMobject declaration structure

 Specification Spec_name [event_list]
(parameter_list)

MMobject definition
var definition

behaviour
behaviour expressions

 endspec

 MMobject Name Type
[WITH

property_name property_value
...
property_name property_value

];

Source Name Type Replication
[WITH prop_list];

Source ...

Sink Name Type Replication
[WITH prop_list];

Sink...

Link Source Sink [expression]

7

MMObject name type
...
SOURCE source;
SINK sink[];
LINK source sink;
END;

MMObject name[] type
...
SOURCE source[];
SINK sink[][];
LINK source sink;
END;

Figure 5 - MMobject declarations for MMobjects represented in figures 3a and 3b.

The declaration of different status interfaces per destination is done by replacing the “name” of the
MMobject for “name[]”. This defines name[i] as the status interface associated with user i, as a valid
MMobject reference in the behaviour declaration part.

3. System architecture

An application for shared presentation of information was developed on DIMPLE. The application
has a group of users running their front-end applications concurrently and watching exactly the same
output. Therefore, the user abstraction described before is well suited, because of the symmetric relation
between each user. The application does not perform some CSCW features such as floor control yet.
These tasks would require lower level controllers spread in the relevant MMobjects and parameterized
by the specification script. Figure 6 shows the architecture presentation system.

The application is specified by a textual
description (a script), written in the language.
In this case, the specification is the structure of
the multimedia document users can access.
Scripts describe the control of the topology and
general synchronization of the MMobjects.
They are interpreted by the Run-time
Interpreters (RTI) which builds a state
machine from it.

Users control the application via the front-
end application, called shared multimedia
presentation (smp), and interact with the
application through the component objects.
When a user touches a key, or presses the
button mouse (over some image, text or video)
an event is generated by the component to every
object that registered the interest on it. If the

RTI registered the interest on that event (because the script included a transaction associated with the
event), then the RTI will receive the event and run the actions specified.

The MMobject interface is controlled by the MMobject manager (OM). The OM supports the
control features described in 2.3 for the manager, including the management of the components, the
topology, and the status interface to the object. The RTI uses one instance of MMobject manager for
each MMobject running during the presentation of the application.

The management of the users running an application is done by the User Group Manager (UGM). It
handles all the data manipulation when users join and leave. The RTI has a Life status exactly the same

Run-time
Interpreter

User
Group

manager

MMobject
manager

Component
objects

Us e rs

s m p

s m p

Figure 6 - presentation system architecture

8

as for MMobjects (see below). Each time a new user wants to join the system (s)he runs smp with the
identification of the application script and a run keyword. smp calls the Prepare of the RTI with these
parameters. As for any other MMobject, one of the results of the Prepare is the return of a controlling
Context status reference. When the user wants to leave smp calls Destroy on its Context interface. The
UGM traps all the Prepare and Destroy operations over the RTI. The first user that runs the application
starts a new instance of the RTI for that particular state machine, and all the MMobject managers
needed are also instantiated. For the other users that join afterwards (same application identification and
run keyword), the UGM only calls the operations add_destination over all the MMobject managers
topology status. The RTI is not aware of the existence of a new user in the system because everything is
the same in terms of general synchronizing control. Similarly, the state machine RTI instance and the
corresponding MMobjects are only destroyed when the last user leaves the application. For the others
that left before, the UGM only calls the operation drop_destination over all the MMobject managers
topology status. In this way, the RTI sees a static interface to the MMobjects when users join and leave
an application. At the moment a user joins an application, (s)he sees the same as the others that were
already running it, and continues running it in parallel afterwards. Similarly, when a user leaves an
application, the others continue running the application, unaffected.

In DIMPLE, an application is just an instance of an MMobject of the type “Controller” (instead of
audio, etc.). These MMobjects have a different internal structure (are supported by the RTI), but they
offer the same interface as any other MMobject. They have a control interface composed of status, are
created through the invocation of the operation Prepare over the Life status interface of a template
server, and support the Context status. They start running when the Play action of the Context status is
invoked, and are stopped when the Stop action is invoked. The application objects also support other
status, such as Pause. When an smp joins the application a private Context status is given to it. This is
transparent to the RTI that thinks it has only one Context status. Each operation invocation on a private
Context status (except Destroy) is not trapped by the UGM and has the default behaviour of invoking
the operation over all the active MMobjects. This means, for instance, that every user can start or stop
the application indistinguishably. As applications are just MMobjects they can be used as simply another
object to build new higher-level applications.

4. Shared Access to an Information Retrieval System

4.1. Overview

This section describes in more detail some aspects of the application. The application can work alone
or in parallel with the Berkom videoconference system [1] to have audio-visual connection between
users.

DIMPLE is implemented on Unix platforms running SunOS4.1.3 and ANSAware, using ATM as the
network technology. As already said, control interactions are performed using ANSAware because of its
support for distribution and transparencies: ANSAware includes a name server, the trader, that allows a
simple but powerful selection to the modules running in the system. The figure 7 shows the modules used
when running an application.

The heart of the system was concentrated in a single capsule, the sserver (script server), that includes
the RTI, a MMobject manager template server, and the UGM. This implementation choice reduced the
infrastructure overhead to the minimum possible. It is a rather centralized type of control, and the
concentration of all the MMobject managers in a single capsule is intended to minimize the
communication overhead between the RTI, the OMs and the UGM. In a previous project where the
object model has already been used a distributed type of control was tested [3]. The work showed that
the resulting system can be complex. Namely, the delivery of the control messages (events) required the
use of atomic multicast protocols to insure the synchronization of the several communicating state

9

machines. Nevertheless, when specifications start to use other specifications as objects, control ceases to
be centralized. There is, however, a master-slave relation not present in the pure distributed case.

sink

smp
sserver

source

host C host A

host B

sink

smp

host D

sink

smp

host E

Multimedia Data
Control

User 1

User 2

User 3

Figure 7 - modules used when running an application.

sservers keep a local application script database, that contains all the scripts supported by that
sserver. In a system, there can be several sservers running. The trader is used for the selection of the
sservers, and in the current version the “hostname” helps distinguishing amongst the active. A running
multimedia application is completely identified by its sserver hostname, the script identification, and the
run keyword. If two users select the same application identifiers, then they will share the application.

Each smp creates a window control box, that have push buttons associated with the operations in
Context status (Play the application, Stop operation, Quit the application), and the Pause button. It is
through this window that the user gives the start and stop commands. When the smp starts, it reads a
local configuration file to start the local component template servers (by default it is called
‘.mmobj_default’ but can be parameterized at command line). During the session, it continuously
monitors them using a watchdog thread. If a local server dies, then smp automatically exits from the
application, and stop every capsule launch by it.

4.2. Multimedia Channels and Interworking with Berkom-MMC

The port status was already described. The currently implemented ones are:
• ansaport -- an ordinary ANSAware control interface compatible with port status which uses

RPC-like protocols with implicit binding;
• udpport -- a direct use of UDP sockets with a light level for extra support (see below), and with a

connectUDP operation to perform explicit binding;
• tcpport -- a direct use of TCP sockets with a light level for extra support (see below), and with

connectTCP operation for explicit binding;
• mmcport -- an access to Berkom-MMC (see below).

The extra support consists of: (a) a rate control feature taking into account real-time, based upon the
use of synchronous up-calls routines to the component objects; (b) jitter compensation algorithms (the
used in the current version are very simple, but a new version is now under development and will be
reported in the near future. The algorithms are based on the controlled drop of multimedia frames, when
their deadline times cannot be met; (c) as described above, the port control interface is used to manage
multipoint connections (using the Connect and Disconnect operations) as sets of 1:1 connections. This
implementation choice makes it ready for a clever use any multicast features of the ATM networks in the
future.

10

The MMobject manager is also responsible for the management of communication with alien system
components. This is the case of Berkom-MMC. DIMPLE and MMC had to interwork because the audio
device of the workstations cannot be shared by user applications (the video board can and each system
competes for it). Fortunately, the control features of the audio MMobject are concentrated on the source
component, so a simple connection to MMC sinks is enough.

MMC provides an API to access its audio sink, using the OSI stack (ISODE) for control of the
MMC audio transport channels. The solution found was to create another port status type, mmcport,
and its Connect operation simply instructs MMC API to connect the source component (DIMPLE) to
the sink (MMC). mmcport status makes usage of a new type of port address reference, based exclusively
on the hostname (used internally by the Berkom system), instead of ANSAware references. Additionally,
a new syntax was defined to specify the connection between a mmcport and a “host” (represented by a
‘#’). In terms of MMobject control nothing changes. In terms of topology control the orders are slightly
different in one case and in the other. Each component type has an access policy that defines how
components of that type must be accessed (what type of the port references must be used during connect,
etc.). The MMobject manager uses this information during the management of the components, and the
linking of that component.

4.3. Existing Objects

In the current state of development, the system includes some basic MMobjects: video; audio, image
and text. Other MMobjects can be integrated without disturbing the existent objects or applications.

The video object uses moving JPEG encoding and provides an interface to the XVideo Parallax
board, that does hardware JPEG compression and decompression. It uses two components: mjpegsrc
(moving jpeg source) and mjpegsnk (moving jpeg sink). They support the status Annotation (can use
intermediate positions on the video for synchronization purposes), Pause (can be paused), Speed (can
change the frame rate, or present the video backwards). For transferring the data, it can use TCP or
UDP protocol. The first one allows a greater frame rate in a LAN environment. However, if TCP is used
on a WAN, with higher error rates, it would be worse than UDP because of the retransmission
algorithm.

The image object provides the presentation of sequences of images of several formats (GIF, PCX,
Sun Rasterfile, etc.). It uses two components: imagsrc (image source) and imagsnk (image sink). They
support the status: Click (can generate an event when click by the user), Annotation, Pause and Speed.
For transferring the data it currently uses the ansaport status. The image object emulates the semantics
of a button.

The text object uses a markup language for font and sensitive word definitions. It uses two
components: textsrc (text source) and textsnk (text sink). They support the status Click and Annotation.
To transfer data it currently uses ansaport status.

The audio object offers two different objects to DIMPLE (two Life status). The first one, the “audio”
object, is used when the system is running alone, and has two components: audiosrc (audio source) and
audiosnk (audio sink). It uses udpport status to transfer data. The second one, the “audiommc” object,
works in parallel with Berkom-MMC, and uses one component: audiommcsrc (audio MMC source).
They support the status Annotation, Pause and Volume (to change the volume of the audio).

11

4.4. Example application

The application, showed in figure 8, consists of an access to a document describing the DIMPLE
platform with some example objects. Its script name is Dimple. When a user wants to run it in a shared
mode with another user who is already running it with the key learnDimple, (s)he must start smp with
the identification (“smp Dimple learnDimple”). The control box appears and the new user starts to watch
the same images as the other user was watching. The document consists of a first index page about
DIMPLE with sensitive words to start subdocuments. The mjpeg word was clicked and an image object
with buttons on it shows the various features of the video object. One of the users clicked on the button
Play and a short movie about a castle is shown.

Figure 8 - Example application

5. Related work

Several works describe experiences covering certain parts of what was discussed in this paper. The
ones which overlap the most are: [7] where the general concept of a multimedia socket and plug is
defined with a reduced set of actions and some type compatibility rules; [5] contains the five ODP
viewpoint specifications of what a stream binding object should be (for multimedia connection).
However, their choice of TCP for data transportation can prevent any practical application due to the
retransmission algorithm. The duplex nature of the streams is not necessary in most of the applications.

12

[4] presents a general taxonomy for the CSCW in open distributed systems but does not cover
continuous media very deeply.

6. Conclusions and Further Work

This paper has shown how an application for multimedia cooperative work can be easily constructed
with the concept of distributed objects and encapsulation of the control of data. The DIMPLE platform
works at control level which is the level required for most of the general purpose multimedia
applications. It is difficult, of course, to express data manipulation at this level (e.g. particular
algorithms for mixing signals) but the simplicity gained in constructing other types of applications
overcome this limitation.

The separation of control and data allows for the integration of other systems in a very easy way.
This is particularly interesting when general purpose networked devices will be standardized in the near
future (a kind of X for video and audio). The DIMPLE platform will interwork with them in a very
straightforward way using the abstraction of port.

An important aspect which enriches the platform is the connection controlling activities inside the
MMobjects. The Reference Model for ODP has a concept for it -- Binding Object. If these activities can
be controlled in a simple way from outside, and can interwork between each other in controlling terms,
then the specification of an application would be very simple. An example is the association of a floor
control algorithm with the enlargement of the video window and the rise of the audio volume for the
speaker. The specification would simply provide the policies for that. Some more work on a clear
definition of a proper interface to these type of facilities is important.

In terms of communication protocols it was felt the need for multimedia transport protocols and
clever usage of the transmission medium by the port part of the objects. The high-performance
connection of the port stubs to the hardware devices is also a critical point in the overall efficiency.

Some issues are still open for further research. One of them is the interface to the controlling facilities
of the port part. A related one is the definition of high-level QoS parameters for the data streams.
Another open issue is the definition of a user “role” semantics, that allows the definition of applications
with several kinds of users (e.g. a game with the players, and the viewers).

In terms of real-time protocols, a low-level synchronization algorithm to enforce intra-stream
synchronization and inter-stream synchronization between different media in an MMobject is currently
being developed and will be reported in the near future. The current real-time enforcing algorithm has no
control on the continuity of data.

A final point is the definition of a syntax to express complex topologies in the language, as it was
explained in the text.

Acknowledgments

The authors wish to acknowledge Companhia Portuguesa Rádio Marconi for the partial funding of
this research. Part of this work was performed under the scope of an EURESCOM project called
EMMA - European Multimedia Experiments in an ATM Environment.

13

References

[1] M. Altenhofen, J. Dittrich, R. Hammerschmidt, T. Käppner, C. Kruschel, A. Kückes, T. Steinig, “The
BERKOM Multimedia Collaboration Service”, ACM Multimedia 93, pp. 457-463.

[2] ANSAware 4.1, System Programming in ANSAware. Document RM.101.02, February 1993.

[3] L. Bernardo, “Specification and Synchronization of Multimedia Aplications with Distributed Control”,
Msc Thesis, Instituto Superior Técnico, Lisboa, Portugal, June 1994 (in Portuguese).

[4] G. Blair and T. Rodden, “The Challenges of CSCW for Open Distributed Processing”, International
Conference on Open Distributed Processing 1993, pp. 99-112.

[5] V. Gay, P. Leydekkers and R. Veld, “Specification of Audio/Video Exchange Based on the Reference
Model of ODP”, Proceedings BRIS'94, pp. 179-191.

[6] ISO/IEC 10746-3, ITU-T Rec. X.903, Open Distributed Processing Reference Model - Part 3:
Architecture, 1995.

[7] C. Nicolaou, “An architecture for real-time multimedia communication system”, IEEE Journal on
Selected Areas in Communication, 8(3), pp. 391-400 (1990).

[8] P. F. Pinto, P. F. Linington, “A language for the specification of interactive and distributed multimedia
applications”, International Conference on Open Distributed Processing 1993, pp. 217-234.

[9] P. Pinto, L. Bernardo, P. Pereira, “A Constructive Type Schema for Distributed Multimedia
Applications”, Proceedings BRIS'94, pp. 419-434.

