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ABSTRACT

This paper addresses the issue of defining a location
service suitable for very dynamic and highly
populated networks (milli ons of users), where
services might experience highly correlated peaks of
traff ic or synchronized access to specific servers.
Mobile agent technology is flexible enough to solve
the major problems, allowing the dynamic
deployment of new application servers when
needed. But it requires an adequate location service
to increase client adaptabilit y. This paper describes a
very dynamic location service that can adapt both to
server and client needs and to the load on the
system. Sets of simulations were performed to study
the effect of the location network structure on the
load distribution.

1. INTRODUCTION

Most of the current distributed applications rely on a
location service to match the client with the server
objects. Most of the common solutions for location
services respond to increases on the load by system
administrator reconfiguration of hierarchical
divisions or by replication. These techniques are not
adequate for large networks, specially if their
applications can produce peaks of traff ic. A
common characteristic of some applications can be
the possibilit y of generating highly correlated peaks
of traff ic due to client interaction with the servers.
Examples are easy to envision: applications based
on interactive TV interfaces, where contests,
promotional prices announcements or audience
queries may synchronise the sending of requests to
particular servers; real-time sport brokering;
teleshopping; etc. Current location service solutions
do not apply properly to large networks with
billi ons of users and milli ons of services for two
main reasons: the application technology will most
likely rely on highly variable server groups to adapt
to client load peaks, producing a non-static
environment; and the location service itself might
suffer from overload and become a critical point on
the system.
Our proposal for an architecture for this kind of
networks relies on the server abilit y to monitor
client load and deploy server clones before an
expected service peak, or as a response to a

unpredictable overload condition. The deployment
will be done to a region close to the majority of the
clients. Servers are implemented using mobile
agents. The application server deployment
algorithm is presented in [3][4]. Clients look for a
precise service based on identification and not on
characteristics [9] (price, availabilit y, etc.). They use
the location service to resolve unique application
names to single server references.
On systems such as ours, the location service itself
must use the same technique to adapt to its own
load. Moreover, its major task must be eff icient: it
will deal with frequent updates of server offers and
possibly bursts of updates or lookups. The updates
must be made available to the clients very swiftly
and in a coherent manner to allow an overall l oad
balance on the system. These requirements imply a
very dynamic structure of servers and information
within the location service and are the focus of this
paper.

2. LOCATION SERVICE

The network provides a ubiquitous platform of
agent systems, in which any mobile agent (server or
client) can run. Each agent system is tied to a
location server (L-server) (running locally or on a
nearby system), where all the interfaces of the local
agents are registered. The L-servers are connected to
others to offer a global location service.
The location service supports application server
replication by resolving globally unique application
names to server interface references. Application
names form a flat name space, just like in [14].
When a client searches for an application name, the
location service helps in the binding process (the
association to a server) directing it to the nearest
server. If the L-server knows more than one server,
it will split the client traff ic. If it knows that a new,
and closer, server was created it will start using the
new one, and propagates this information. When a
client comes for resolution, it will get the best
answer for that moment.

2.1. EXISTING LOCATION SERVICES

The location service must scale to a large number of
clients. It must deal with a large number of updates
resulting from server clone creation and server



mobilit y. Such requirements invalidate some of the
current technical solutions, based on static
hierarchical systems. Present solutions fall i n two
general categories: home tracking node approach
and a distributed tracking approach.
On the first approach, L-servers are statically
associated (universally known) with the tracking of
each entity (service, agent, etc). Notorious examples
are the classical name (DNS [2][5]) or directory
(X.500 [6][10]) distributed systems and trading
services (RM-ODP Trading function [7]). DNS
completely tights the identification of the
information with the identification of the L-server
that has it (domain-dot-domain). It provides both
divisions on the information space and a path to
reach the L-server. Others have less tight links
between the information and the L-server location
but need extra information to locate the L-server
(with schemes such as distinguished name mapping,
federation of subspaces, etc). Most of the mobile
communication networks (GSM, IS-41 [1]) also fall
into this first group. The use of this first approach
has several drawbacks: a “home”  L-server may
create an access bottleneck, a single point of failure
and may derive in bad bandwidth usage. To avoid
frequent remote update of server locations, the
home L-server solution might be extended using
“chained forward pointers”  [1][13] to define a path
from the home L-server to the server location (when
the agent moves, a record is kept at the previous L-
server with a pointer to the current one). On this last
case, the use of more localised update operations
(during application server updates) results in a
higher susceptibilit y to node and link failures.
Checkpoint techniques with the home L-server
might reduce the problem but have costs.
The second approach, the distributed tracking
approach, relies on a search mechanism among the
L-servers to locate the information. Information is
kept at the server’s nearest L-server. Some routing-
like information must be disseminated to limit the
search space. WhoIs++ [15] supports a yellow pages
service of users based on a hierarchical structure of
L-servers (index servers), where each L-server
forwards a list of attributes and the associated set of
values towards its higher hierarchical L-servers. The
lists are used during searches to exclude subtrees.
Further improvements are presented on Globe [14]:
a hierarchical structure is proposed where the
higher-level L-servers have pointers to the entire
space of offers (offers use a flat name space for
groups of objects), allowing the selection of the
nearest application server. But this solution still has
some scale limitations, even considering the
splitti ng of the offer spaces by several L-servers and

by filtering the void updates from lower levels. The
huge information space and the size of the network
may turn the task of managing the root L-servers
and the hierarchical subdivisions into an almost
impossible task.
A common limitation to most of the previous
approaches is the use of static, administratively
defined, location server networks which define a
static number of L-servers and the links between
them. Apart from node failure susceptibilit y
considerations, it li mits the scale to which the
location service may operate due to bandwidth or
processing limits.
In both categories, caching schemes can be used to
limit client accesses to the L-servers. However, they
are ineff icient for our requirements. If the values
change very rapidly, and in unpredictable ways, the
cached values will have a very short li fe, or may
hide the application server’s reconfiguration from
the clients. The use of cache invalidation methods
[8] would introduce non-scalable world-wide
updates.

2.2. LOCATION SERVICE MODEL

Our proposed system is based on a dynamic location
network, which follows a distributed tracking
approach. The client performs searches on a step-
by-step basis, through a sequence of L-servers. The
routing information for the path is based on service
hints. Hints are either the full application name or
incomplete information about the application just to
direct the search to another L-server. The objective
is to keep hints small and easy to update.
The location network is structured as a mixture of a
meshed and a hierarchical structure where L-servers
at each hierarchical level interact with some of the
others at that level and (possibly) with one above.
Higher hierarchical levels always have incomplete
information about the available services.
Additionally, the hierarchical structure and the
range of the mesh change dynamically according to
the load of the system, and to the size of the “server
domains”  (see below). The cost of both
decentralising the search (not using a unique root)
and having partial information is to have a longer
client search if servers are far away (with the
possibilit y of failure). However, within a limited
range, it simpli fies the search algorithm, and the
overall system is simpler and scales better.
The location service uses two kinds of components:
the Local Location Proxy (LLP) objects run on
every agent system (AS) as an interface to the
global location service; and the Location Servers (L-
servers), which are mobile agents, run on some
agent system and keep the service information.



LLPs provide an indirection level, which hides the
location network dynamism from the clients. LLP
objects support the location-agent system network
represented on the lowest plane in figure 1. Their
knowledge of the topology is limited to their
neighbours, and to the conditions of each link. This
network is static and only changes by system
administrator intervention, or when a new agent
system is connected (or disconnected). Each link
can mean geographical proximity, enterprise
proximity (e.g. linking two multinational
delegations), or other proximity. The number of
agent systems between L-servers defines the link
”distance” , thus defining a network metric.
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Figure 1: Network Model

The L-server network (L-network) is constructed on
top of the agent systems’ network using a topology
protocol. The resulting network is dynamic (in
number of L-servers and in network structure)
adapting itself to the load conditions and possible
failures of nodes and links. The service trading
protocols use the entire L-network, providing
support for service hints dissemination and
information queries. Several hierarchical levels of
meshed networks might exist to deal with different
ranges of service offers.
LLPs exchange identity information, and the
identity of the L-servers they know, with other LLPs
within a certain range, using a kind of limited range
“ link state”  protocol [11]. Each LLP choses a
preferred L-server. LLP objects keep a record of the
neighbour L-servers, selecting an alternative one in
case the preferred fails. To reduce the overhead of
the protocol, the L-server names are valid on a
limited range of the network. New LLPs join the
system by exchanging initialisation packets with the
neighbours, and binding to the nearest L-server. The
neighbours may be defined by the system manager
(typically on a fixed network), or by a specific
resolution server on the network.

Each L-server knows all of its LLPs (or descendant
L-servers), and may instruct some or all of them to
join another L-server, if for example, its domain
gets too big. L-servers get to know their neighbours
both by receiving the information forwarded by the
LLPs, and by running a similar “ link state”  protocol
at their level (which is also used to feed information
one level upwards). The division of L-server
domains (or merge, or move of L-servers) will
involve only surrounding L-servers. Information
messages are exchanged locally, to update the L-
server identities. The old identity is kept until the
propagation of the new identities to all the
surrounding L-servers, to guarantee the overall
system coherence.

2.3. TRADING

During an offer, registration servers specify the
range where the service will be known (which is
related to the relevance of the service). For instance,
a city’s transit information is relevant only for the
drivers in that city. A weekly lotto broker service
can be offered by a single server, known to a
broader region of the network during quiet days,
and a myriad of servers known very locally on the
day just before the draw. Pricing schemes could be a
deterrent to artificially large domains. The metric
used to define the range is the distance in number of
agent system hops. This approach reduces the
amount of information that needs to be known at
large areas, producing a more scalable approach.
However, only clients who search for the service
within the server range will be able to follow the
path to it.

2.3.1. SERVICE ROUTING

Routing information (service hints) is disseminated
between L-servers horizontally (possibly at more
than one hierarchical level) and vertically to higher
hierarchical levels.
Horizontal dissemination involves L-servers sending
information packets to their neighbours. The
receivers process the packet, discard the elements
within the offer list which are out of range, and
forward it to the next L-server further away from the
origin if the previous information recorded was
modified. Service hints on the forward information
packets are successively simpli fied from a complete
information (with the application name and server
interface reference); to the application name and a
L-server name; to a hash value of the application
name and a L-server name. Service hints are
removed from the information packet when they
reach the range limit, or, do not modify the
information at the L-server. The hash function



introduces the loss of uniqueness between the space
of application names and the smaller hashed space.
This is not a major problem because the interface
reference was dropped and the path had to be
followed anyway. However, it has failure
implications because a client could have been
misled if it was looking for another service that
generated the same hash result. The distance where
the collapse takes place is service dependent and is
regulated by the server.
A L-server forwards information packets to its L-
server one layer above (if it exists) using an
identical simpli fication process. For each service,
the maximum possible hierarchical level required is
defined by the requested service range.
Clients control their search range when they lookup
a service. If they are near the server’s L-server, the
information is kept complete, allowing clients to
interact directly with the server. Further away it gets
simpli fied and clients have to follow hints, or move
in that direction, with a probability of failure.
The information in L-servers at higher hierarchical
levels will always be composed of incomplete
service hints (identified by hash values) to reduce
the update rate to the minimum value (only new or
ending service hints are disseminated to this level).
They offer a broader but less detailed vision of the
services available, which acts as a distributed index
service. The location service does not provide a
“ root”  service, which has complete knowledge of
the system. In fact, if the client search range and the
server offer range does not intersect, clients may fail
to run the service. If an absolute reliable resolution
is required, a new service (external to the location
service) could be provided to search all top-level
servers at that moment to look for the service
network-wide.
The server offer information dissemination
overhead is lowered by creating temporary chained
forward service hints after a server migration. The
service hint update information packets can then be
buffered and multiplexed over a single information
packet, reducing the bandwidth usage, but
maintaining the coherence of the service hint’s path.
Priority packets (like service cancellations) override
the buffering and force the sending of the updates,
to minimise the period of time with incoherent
information (paths to a non-existing server).
Figure 2 shows an example of the location service.
The lowest plane, the agent systems plane, has sets
of agent systems forming meshes. The second and
third planes show the first and second hierarchical
levels of the L-network (with meshes in each one,
and upward connections not designed). In this
particular case, a reference to the server ’s’ is

known completely on all agent systems at the server
location's domain (darker grey area). The lighter
grey areas represent the scopes where incomplete
information is known (reference to the L-server
associated with the agent system where the server is
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Figure 2: Location Service Network Model

2.3.2. DYNAMIC HIERARCHIES

The hierarchical structure of the L-network is
dynamic and depends upon the number of active
application servers, the requested service ranges and
the number of client requests. It works as a scale
mechanism to both balance the L-servers load and
reduce the service hint dissemination and lookup
overheads.
The overhead of the horizontal dissemination
algorithm limits the maximum range supported at
each hierarchical level (the maximum number of L-
servers involved). The structure of the location
service (hierarchical levels and meshes) will vary to
gather the necessary number of agent systems the
application servers want in their domains. A new
hierarchical level is created if the existing meshes
do not cover the new requested range.
Other adaptation mechanisms occur when L-servers
become overloaded. L-servers measure the number
of server hints registered locally and the client load.
The overload might result from a restricted set of
highly demanded services, or from serving too
many descendants agent systems or lower level L-
servers (in result of hosting new mobile servers or
peaks of requests). When a restricted set of services
is involved, the proper setting of the horizontal
service information dissemination at levels below
the maximum can be used to lower the L-server's
client load. This is so, because client load on L-
servers at higher hierarchical levels is due to
requests not answered at the lower levels.
Disseminating server offers horizontally at L-
servers in lower hierarchical levels can lower this
load, at the cost of higher dissemination overhead. If
the overload is indefinite, then L-server replicas are



created to split the load. New intermediate
hierarchical levels might also be created, if several
L-servers at the same level detect the same problem,
resulting on too high horizontal disseminating costs.
Temporary “chained service hints”  are widely used,
to allow low priority service hint updates. The
inverse may also occur: L-servers may be destroyed,
to reduce the service dissemination costs. The
descendants (L-servers or LLPs) are informed of the
reconfiguration by the original L-server.

3. SIMULATION RESULTS

A simulator was developed using the “Discrete
Event”  model on Ptolemy [12] system, which
implements the location service protocols. The
simulation results presented in this paper compare
the eff iciency of three static structures for the
location service: a pure hierarchical structure with
three levels where the topmost one is a single root
node; a flat one-level meshed structure; and the
multi -level model proposed on this paper (with two
levels). The dynamic reconfiguration of the location
service (creation and destruction of L-servers) was
disabled during the simulations to focus on the
information dissemination process - its study was
left for a future paper. Client load was constant and
symmetrical. When a client is born, it starts
searching for an application server, and lives until it
can make an interaction. Our main results are the
number of service information packets exchanged
between L-servers and the number of client lookups
per L-server.
All simulations were conducted with a network of
625 agent systems, where each agent system has an
average of 3 connections to its neighbours, with a
maximum distance between agent systems of 24
(agent system) hops. Two servers were placed on
the network (clone creation was disabled - see [4]
for this aspect). Servers registered their offers on a
range of 12 hops (covering the entire network), and
have complete service information on a single L-
server. The time to process location service requests
and service requests was respectively 1000 and
8000 tics. The transmission time between nodes was
set to 1 tic. During a simulation time of 20 milli on
tics 4000 clients were created at all 625 nodes with a
uniform distribution of the inter-client creation time
on the interval [0, 10000]. The first hierarchical
level of L-server network has a total of 125 L-
servers, with an average of 8.3 agent systems per L-
server. The second hierarchical level (used in the
multi -level and hierarchical experiments) has five L-
servers. The third hierarchical level (only used in
the hierarchical experiment) has a single root L-
server.

Figures 3 and 4 show respectively the average
number of client lookups per L-server during the
experiments (for a total of 4000 clients) and the
average number of service information packets
exchanged (to the neighbours or upper level) by
each L-server per server registered. Multi -level
experiment uses a dissemination range at the first
hierarchical level of 6 hops.

Level 1 Level 2 Level 3

Pure
Hierarchical

105.0 1279.6 2514.0

Multi-level 123.2 257.6 -
Flat 157.2 - -

Figure 3: Number of client lookups per L-server for
4000 clients

Level 1 Level 2
Pure
Hierarchical

0.013 0.20

Multi-level 1.72 0.50
Flat 8.80 -

Figure 4: Average number of service information
packets exchanged per L-server for each new
application server

Figure 3 shows that a pure hierarchy scales poorly.
The root L-server receives lookups from more than
50% of the clients and each L-server at the second
hierarchical level receives a request from more than
25% of the clients in average. The use of horizontal
dissemination in the multi -level and flat experiments
allowed a reduction on the number of client lookups
per L-server. The disadvantages are the overhead
paid in the number of service information packets
exchanged (shown in figure 4), and a longer L-
server resolution path that will i ncrease for bigger
networks (the resolution path in pure hierarchical
structures is independent from the network size).
The peak value for L-server lookups happens at L-
servers where application servers registered their
offers (with about 2000 client lookups). This value
can be lowered if the number of L-servers with
complete service hints is increased.
The multi -level structure offers an intermediate
performance knob, which can be tuned by setting
the “spread”  of service hints at the first hierarchical
level. By changing the value from 0 to 12 LLPs
covered, the system behaviour changes from a
hierarchical structure (with two levels and a meshed
root) to a pure flat system. Figure 5 shows the
percentage of clients requests answered by the first
level L-server that needed one lookup to the second
level.
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Figure 5: Client requests directed to L-servers of
second hierarchical level.

4. CONCLUSIONS AND FURTHER WORK

This paper presents a scalable location service
architecture suitable to very large systems with
mobilit y and the possibilit y of handling correlated
peaks of traff ic. We argue that a static approach is
inappropriate and the inner structure of the service
must be dynamic to adapt to the conditions of the
moment. The trade-off is the need to exchange
information inside the service (a feature not seen on
classical name servers). However, this is not so
critical because application servers tend to adapt to
client load and most of the relevant lookups tend to
be local. The simulation results presented prove the
importance of the location network structure to the
L-servers load, and to the overall performance of the
location service.
On-going work includes (a) a thorough study about
the changes on the hierarchy structure, (b) the trade-
off between application server clone creation and
the cost of maintaining consistency of application
data (“ low-cost”  inter-replica state synchronisation
techniques), and (c) more complex interactions
between clients and servers, such as connection
oriented ones in the presence of mobilit y, to include
multimedia, for instance.
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