
Scalable Service Deployment on Highly Populated
Networks

Luis Bernardo and Paulo Pinto
IST - Instituto Superior Técnico, Lisboa Portugal
Inesc, R. Alves Redol, 9 P-1000 Lisboa Portugal
Phone: +351.1.3100345 Fax: +351.1.3145843

{ lflb,paulo.pinto} @inesc.pt

Abstract. Very large networks with thousands of applications and mill ions of
users pose serious problems to the current traditional technology. If
synchronised client behaviour exists, then the limitations are even stronger.
Cooperative agent systems can be a suitable technology to answer to these
requirements if some aspects of the architecture are carefully designed.
Particular attention should be given to the trader component and to the dynamic
behaviour of the applications in response to client demand. This paper proposes
a cooperative mobile agent system with a very dynamic and scalable trading
service. The system is designed to allow applications to deploy servers onto the
network to respond to demand making them self-configurable. Sets of
simulations were performed to study the dynamic behaviour of the overall
system, and identify the relevant tuning parameters.

Topics. Open, Scalable Agent Architectures for Telecommunications
Applications; Middleware for Agent Communication

1 Introduction

One of the problems facing designers of client/server applications, which are
deployed on large-scale networks with milli ons of users, is the dimensioning of the
server entities. Moreover, a characteristic common to some of the applications is the
possibilit y of a synchronous pattern on the behaviour of the clients, producing peaks
of traff ic on servers. Examples of such applications are easy to define and can be tele-
voting, tele-shopping, real-time sports brokering, stock brokering or applications
based on interactive TV interfaces. These applications will i nvolve a large number of
clients, that may produce a burst of requests after a relevant event (e.g. a team scores
a point, the announcement of promotional prices, or a deadline is approaching). It is
essential that the application must satisfy the service response time requirements even
under these extreme conditions. Therefore, both its static and dynamic behaviours
need a careful design.

An eff icient design choice is the possibilit y of launching a variable number of servers
to process client requests in parallel (assuming that the nature of the service allows
server mobilit y). A static approach to the problem, using a fixed number of servers
and conventional traders, leads to ineff icient resource usage solutions: either the
number of servers is insuff icient or there is over-dimensioning of the servers

deployed. Most of the traditional dynamic solutions use a strictly system-based
approach, instead of a per-service solution: they rely on system components to
balance the requests amongst a constant pool of machines [2], [4], [6], [9], possibly
deploying new servers. However, a worldwide service must not be based on a limited
set of machines. Servers must be spread worldwide near the client’s location to avoid
bandwidth bottlenecks. The dynamics on the client’s location over time will guide the
server’s deployment, resulting in lower client-server communication delays [20].
Such requirements can be achieved with any system providing remote object creation
with state initialisation (such as factory objects or ORB implementation repositories
[16]). However, the distribution of the server implementation would have to be made
on all possible platforms. Mobile agent platforms provide a simpler way to deploy
personalized services since all servers are obtained by cloning an initial replica.

The proposed system is based on a mobile agent system platform. Its architecture
does not conflict with the standardization efforts of OMG [17], or some of the
available mobile agent systems ([10], [15], etc). The main differences are the
requirements of the trader (called here location service).

As it is described in this paper, our system assumes a scenario where clients look for a
precise service. The system does not support service discoveries based on
characteristics [13] (price, availabilit y, etc.). Clients look for applications using a
unique application name that is resolved to a server reference by the location service.
Each application server sets an area of the network for its service to be known (server
domain). Then, the location service splits the network dynamically into areas
depending on the server population, the server domains, and the location server’s own
load. The location service has a new scalable algorithm to adapt to its own load
(lookup requests) and to advertise the services of the servers it is responsible for. An
overview of the location service is given in section 2.

Server mobile agents are autonomous on their control over server deployment.
Servers use the dynamic topological information of the location service, the client
load, and the overall situation of servers that belong to the application they are
serving, to control the deployment of new servers and adapt precisely to the client
load. The aim is to produce a highly flexible and scalable system that can support
milli ons of interactions maintaining the desired quality of service. The proposed
adaptation algorithm works as follows: each server monitors its client load and
compiles the domains of the clients. When a peak on the load occurs, the server agent
reacts creating clones, and deploying them based on the client origin information. A
market oriented algorithm is used to reverse the process - lower the number of
servers, when the client load decreases.

The study of the dynamic nature of the system covers too many aspects to be
described in a single paper. In this paper we present a brief overview of the system
components, the server deployment algorithm and a study of the dynamic behaviour
of servers in face of a rising client demand (the adaptation to the worst case). The
location service, which is itself a special dynamic service with its own load adaptation
algorithm, will be covered on another paper.

2 System Overview

The network provides a ubiquitous platform of agent systems, in which any agent
(server or client) can run. Each agent system is tied to a location server (running
locally or on another nearby system), where all the interfaces of the local agents are
registered. This location server is connected to others to offer a global location
service.

When a client searches for an application name, the location service helps in the
binding process (the association to a server) directing it to the nearest server. If the
location server knows more than one server, it will do splitti ng of the client traffic. If
it knows that a new, and closer, server was created it will start using the new one, and
propagates this information. When a client comes for resolution, it will get the best
answer for that moment. The balance between the number of servers, clients and
location servers acts as a general load balancing mechanism in the system.

An application may scale and respond to peak conditions by deploying new servers,
and thus increasing its total server processing capacity. The effectiveness is
conditioned by the amount of time a server is inactive during the duplication process
(which must be compared with the response time required by clients); and by the
extra overhead to maintain consistency of the shared data due to the existence of a
new server. The intra-server synchronisation is specific to each application (a simple
placement of an order would not need such logic).

2.1 Location Service

The location service is one of the major players for scalabilit y. Its requirements
include: the necessity for fast updating during the creation of a server clone, the
propagation of frequent updates due to server migration, and the dynamic nature of
the information in the overall system (based on dynamic server domains). These
requirements introduce a high overhead, which invalidates some of the current
technical solutions, based on static hierarchical systems. Particularly:

• The use of cached values at remote nodes makes a fast change on the configuration
information impossible [1].

• The use of full path names which define completely the search path [1], [11], [18]
requires the use of a “home” server to keep all service related information (creating
a bottleneck), or the backpropagation of a modification through the entire location
network (making a update a costly operation).

None of these techniques must be present on a scalable and highly mobile system.
First of all , the application names must be flat ([21] reached a similar conclusion).
Secondly, the search path, which is now independent from the name structure, must
be performed on a step-by-step basis, through a path of location servers where each
one contains routing information indexed by the application name. Thirdly, this step-
by-step path should be tuned by the load and characteristics of the overall system.

The routing information for the path is based on service references. References are
either the full application name or incomplete information about the application just
to direct the search to another location server. The objective is to keep references
small and easy to update.

One important feature is how the location service scales to a large population. We use
a mixture of meshed and hierarchical structure, where location servers at each
hierarchical level interact with some of the others at that level and (possibly) with one
above. Higher hierarchical levels always have incomplete information about the
available services. Additionally, the hierarchical structure and the scope of the mesh
change dynamically according to the load of the system, and to the size of the server
domains.

The size of the server domain is service specific. For instance, a car parking service
would simply advertise on the surroundings of each car park, while a popular lotto
broker service would advertise on a broader range (pricing schemes could be a
deterrent to artificially large domains). The structure of the location service hierarchy
(hierarchical levels and meshes) will vary to gather the necessary number of agent
systems the server wants in its domain. Higher hierarchical levels offer a broader, but
less detailed vision of the services available. On the other side, clients control their
search range. Due to lack of depth, or incomplete information, resolutions can fail ,
and a deeper search must be tried.

Figure 1 shows an example of the location service. The lowest plane, the agent system
plane, has sets of agent systems forming meshes. The second and third planes show
two hierarchical levels of the location service (with meshes in each one, and upward
connections not designed). In this
particular case, a reference to the
server ’s’ is known completely on
all agent systems at the server
location's domain (darker grey area).
The lighter grey area represents the
scope where incomplete information
is known (the reference to the
location server associated with the
agent system where the server is
running).

3 Server Deployment

A good measure of the quality of service for this system is the global server response
time to client requests. For each application, this time must be controlled within
specific bounds. It includes: the time to resolve the application name to a server
reference, plus a waiting time on the server due to client load, plus a service time

L
L

L

as

as
as

as

as

as
as

as
as

as as

as

as

as

as

as

as as

as

asas

L

L

S

L

Fig. 1. Location Service Network Model

dependent on the application (which depends on whether it is a single RPC or a
session, the overheads for distributed data consistency, etc.).

The controllable system parameters are the number of servers deployed, their location
and each of the server domains. The main parameter will be the number of servers,
which defines the total available server processing capacity. At some instant, the
“processing capacity ratio” (ratio between the number of servers deployed and the
number of clients entering the system per time unit multiplied by the average service
time) quantifies the availabilit y of processing resources to satisfy the demand of new
clients. The variation of the waiting time depends on the value of the processing
capacity ratio (PCR) and on the distribution of clients per server. It gets higher when
the PCR is below one, and gets lower otherwise (assuming a completely balanced
system). As clients are bound to servers based on the distance and on the relative
importance of the server (broader server domains get more clients), some unbalancing
can exist depending on the relative distribution of clients.

3.1 Deployment Algorithm

The number of servers and their location could be configured if the service usage
peaks and the origin of the requests could be anticipated. Unfortunately, for most of
the applications, there is only a vague forewarn of how much the "peak load" may be,
or when it will happen.

The proposed algorithm may be used with various client-server interaction methods
[3]. However, it provides the best results when the interaction methods allow servers
to know the precise number of clients using a specific server (server’s load). This
knowledge can be obtained from the client pending requests on the server’s input
queue (either session connections or RPC invocations). Our algorithm uses this
information as well as local machine load, ignoring the number of clients that are
trying to reach the server and fail . It also compiles the clients' origins and keeps a
statistic indexed by the location server identifiers.

When the client load goes above a top threshold value, the server creates and deploys
a new server. This action is isolated. It does not involve interaction between
application servers. The new server’s location server is selected amongst the most
frequent sources of agents (local or not). The new server is created on an agent system
picked from a list returned by the selected location server. The new server will only
be completely available to run client requests after Tclone, which is the time to create a
clone on the remote agent system, plus the delays at the location service
(dissemination of the new clone’s server reference). During this period, new clients
continue to bind to an already overloaded server. So, the triggering mechanism of the
top threshold value is disabled for a duration dependent on Tclone. When the total
number of pending clients is known, a temporary increase on the top threshold value
can be made to include an estimate of the number of clients that would be processed
by the new server during the disabled period.

If the demand is very high, and the waiting time exceeds largely the response time,
the server can unbind some of the clients, or can mutate itself (i.e., close the old
interface and create a fresh one). The number of pending clients (if available) or the
number of consecutive load overflows are used to detect such conditions. Unbinds
and mutation will force a new resolution phase for all waiting clients and a
redistribution of the clients for the available servers.

A market-based control technique is used to reverse the algorithm. When the load
goes below a bottom threshold, the server sends a message with a “request for bids”
to all the neighbour servers (within a distance range in the location network),
requesting one of them to take its place. Requested servers will answer with a bid,
stating if they can expand their domain, and stating their load. The requester will wait
for answers during a time interval, and selects the best bid within the minimum
distance with the minimum load, afterwards. Notice that the value of the time interval
is not as relevant for the system performance as in other market oriented systems (e.g.
[6], [14]), where the system response time is directly related to this value. The bottom
threshold is only enabled for dynamically created servers. Permanent servers (created
by service provider’s specification) live as long as service providers want.

The presented algorithm scales to broader networks than alternative approaches
(transaction managers [4], load balancing systems [9], broker/matchmaker agents [8],
or market oriented systems [6], [14]) since the adaptation to overload conditions is
based on an isolated algorithm. However, it may cause the deployment of a higher
number of servers since the location service balance client requests amongst servers
known locally not taking into account the server’s instantaneous load. The
equili brium between the client load and the number of servers deployed is achieved at
limited ranges, instead of at a global level.

4 Dynamic Behaviour

The analysis of the dynamic behaviour of the system was conducted using a
simulation model. The set of tests presented focused on the adaptation to a constant
demand from clients. The simulation model runs all the services described so far but
the interference of some algorithms was avoided. The effect of the location service
was reduced by setting a very low-resolution time (compared to the application
service time), and by disabling the dynamic change of the hierarchy. Nevertheless, it
still runs the application name distribution algorithm, which introduces a delay
between the deployment of a new server and the stabili zation of the location service
information (proportional to the transmission delay between servers). The effects of
the variation of the latency on the communication between agents were disabled, by
setting it to a constant value. This very symmetrical scenario produces highly
synchronized reactions on servers, but it is clearly the worst case.

With respect to the adaptation algorithm, we studied three alternatives for
redistributing clients when a client load peak happens. The first is to mutate the server
completely, to even avoid those clients that made the name resolution but are not yet

in the queue (total unbind). The mutation is executed after the new clone becomes
operational i f the queue is still overloaded. When several clones are created,
deactivation is delayed until the last server starts. The second is to unbind those
clients in the queue whose waiting time exceeds Timeout (partial unbind). The third is
to serve all clients not doing any unbinding (none).

4.1 Simulation Environment

The simulator was developed using the "Discrete Event" model on the Ptolemy [19]
simulation system. All tests were conducted on a network presented in figure 2, with
132 agent systems and 19 static location
servers. Results were collected at the end of
each measuring interval of 0.5 units of
simulation time. The duration of each
simulation was 30 time units (tics).

The simulation assumes an atomic interaction
between the client and the server agents. A
client is born and lives until it can make an
invocation to the server. The total number of
clients accessing a server is supposed to be
known. Our main results are the client’s li fetimes, which are the overall application
response times.

The application and location service servers are modelled by a queue defined by a
service time probabilit y function, TS and TL respectively. For all the experiments
reported in this paper, TL and TS were deterministic functions with the values 0.001
and 0.1 tics respectively. The transmission time was set to 0.0001 tics. Servers use the
number of requests in the queue as an indication of client load. The top threshold
value is called "Maximum Client Queue Trigger Level" (MaxCliQ) and the disabled
time after a clone is launched is 1.5 times Tclone.

The client creation is defined by an inter-client generation statistic, and clients are
deployed with a uniform distribution to a set of 125 agent systems. The inter-client
deployment statistic is defined by a uniform distribution on the interval [0,
2/ClientLoad], where ClientLoad defines the average number of clients that enter
into the system during a time unit.

4.1.1 Results

The simulator measures the client's li fetime, the number of clients and servers, and
their state. Therefore it is possible to have an evolution over time of the averages on
the measuring intervals. Figure 3 shows the evolution of: New Clients, the number of
clients which entered the system; Unbinds, the number of clients unbound during the
interval; Pending Clients, the number of clients waiting on queues (of both
application and location servers); Ending Clients, the number of clients which
terminated during the interval; and Processing Capacity, the number of servers times

Fig. 2. Simulated meshed network

the service time (which measures the number of clients which can be processed on the
interval). The second graphic shows the evolution of the average global response time
per client measured on each interval, represented by TT (Total Time). The curves
were measured with ClientLoad= 250 clients per tic (125 new clients per measuring
interval), using partial client unbind with Tclone= 1, MaxCliQ= 15 clients and Timeout=
1.5. It is also possible to calculate: the average value, TTavg; the worst client li fe value,
TTworst; and the time value that includes 95 percent of all clients’ li fetimes, TT95.

0

100

200

300

400

500

0 10 20 30

Time

New Clients

Unbinds

Pending Clients

Ending Clients

Processing
CapacityTsetup

Figur
Tdrain

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0 10 20 30

Time

TT

Fig. 3. Service Response – evolution on time of the number of clients and of the average total
delay

As soon as client requests start (at tic 1), the number of pending clients grows and the
system starts to adapt. At Tsetup the processing power deployed is already enough for
the client load. After Tsetup the number of pending clients starts to decrease. TT
continues to grow just for a short while after this point (the curves are almost equal
for the experiment of f igure 3 because unbind was used). Tdrain measures the instant
when the number of pending clients is below arrival rate for the measurement interval
(new clients). It is clear how the system gets stable with a very low and constant
response time. All the presented values are averages of at least two experiments, and
can be scaled to an arbitrary system using the relation between the service time
values.

4.2 Results with Weak Inter-server Synchronisation

Figure 4 present the global response time histograms for the three unbind methods.

The resulting TTavg and standard deviation values for partial, total and no binds are
respectively: 0.52±0.81, 0.42±0.99 and 0.93±1.49 tics. Both unbind
methods improved the system response time, with a better overall performance for the
server mutation. However, the measured peak number of unbound clients is very high
(274 during a measurement interval) compared to unbound clients with partial
unbind (98) and to the average number of new clients (125), resulting in PCR values
of respectively 1.64, 3.86 and 1.38 (41, 97 and 35 servers). A minimum of 25
servers was needed to satisfy the new client requests.

A particularly nasty side effect of the total unbind procedure for our very symmetrical
scenario is the following: new servers receive a "peak" of both redistributed clients

and new ones, which may be higher than MaxCliQ, generating unnecessary new
clones. The partial unbind method is used for the remaining experiments, because it is
the one which offers the best trade-off between the deployment cost and the measured
response times.

1

10

100

1000

10000

0 2 4 6 8 10

TT

Partial

Total

None

Fig. 4. Histogram1 of response times for: partial client unbinding (with Timeout=1.5), server
deactivation (total), and no unbinding, ClientLoad=250, MaxCliQ=15, five starting servers

4.2.1 Parameters Configuration

For each application, the values for service time and Tclone will i nfluence the minimum
achievable response time. Figure 5 shows the system performance for five values of
Tclone, when a peak of 250 clients per tic is injected on a system with five initial servers
(initial capacity of 50 clients per tic). As expected, Tsetup depends strongly on Tclone,
resulting in more pending clients for higher Tclone values. Consequently, client li fetime
(TT95 and TTavg) increases, and a higher number of servers is deployed (PCR). For
the smallest value of Tclone (0.2) it is still noticeable a drain time, which exists even for
Tclone = 0, due to buffering on the server queues (MaxCliQ is above zero).

0

1

2

3

0 1 2

Tclone

P
C

R

0
2
4
6
8
10
12
14

0 1 2

Tclone

T
i
m
e T T avg

T T 95

T setup

T drain

Fig. 5. Tclone sensibil ity with ClientLoad=250, MaxCliQ=15, Timeout=1.5, five initial servers

Several parameters can be set to optimise the algorithm performance. Figures 6a, 6b
and 6c show the distribution of TT95, TTavg and PCR for a set of 25 pairs of values for
MaxCliQ and Timeout, with ClientLoad= 250 clients per time unit, Tclone=1 and five
initial servers.

1 0 values were converted to 1 to allow a logarithmic representation of the number of samples

5 10 15 20 30
0.5

1

1.5

2

3

MaxCliQ

Timeout

3.5-4

3-3.5

2.5-3

2-2.5

1.5-2

Fig. 6a. TT95

5 10 15 20 30
0.5

1

1.5

2

3

M axC liQ

Tim eout

1.2-1.4

1-1.2

0.8-1

0.6-0.8

0.4-0.6

0.2-0.4

Fig. 6b. TTavg

The Timeout value controls the
redistribution rate between servers, and
MaxCliQ controls the trigger value to
launch new servers. Together, they control
the system response speed to a peak of
requests. The figures show a strong
dependency on both parameters with an
interesting trade-off : if the response time
has to be very low, then PCR will rise
(generating too many clones). The
configuration must be defined considering

the application requirements. For instance, a fast response (TTavg < 4 * TS = 0.4 tics)
implies PCR > 2.5. The fastest measured response time (MaxCliQ=5 clients,
Timeout=1 tic) had 99% of clients with a li fetime less than 2.725 tics. The best
possible response time is Tclone plus service time (1.1), with the creation of one server
for each waiting client. For Timeout values below Tclone, clients get unbound before a
new server is deployed, which originates a high number of creations, and the
measured high value for PCR.

Figures 7a, 7b and 7c show the distribution of TT95, TTavg and PCR for twenty
configurations of different ClientLoad and initial number of servers, with
MaxCliQ=15, Timeout=1.5 and Tclone=1.

The results show a minor increase of the response times (TT95 and TTavg) and of PCR
(the ratio between number of servers deployed and the minimum necessary) compared
to the increase on ClientLoad (800%), which proves the algorithm scalabilit y. If the
total number of clients bound to a server is not known then the response would be
slower, and the ratio would decrease. However, it would always be low, since the
number of servers deployed grows exponentially. The initial number of servers has a
great influence on the three parameters, specially for lower ClientLoad values. When
the load is high, the adaptation is done quicker due to a flooding of servers and the
PCR gets higher (over-deployment of servers). In this case, the initial number of
servers becomes irrelevant. It is interesting to note that for ClientLoad = 125 and five

5 10 15 20 30
0.5

1

1.5

2

3

M axC liQ

Tim eout

2.5-3

2-2.5

1.5-2

1-1.5

Fig. 6c. PCR

initial servers the system moves smoothly and the response times are very acceptable.
This proves that some load expectations from the application can produce very stable
adaptations.

1.5

1.7

1.9
2.1

2.3

2.5

2.7

1 2 3 4 5

Initial servers

T
im

e

125

250

500

1000

Fig. 7a. TT95

0.35

0.4

0.45

0.5

0.55

0.6

1 2 3 4 5

Initial servers

T
im

e

125

250

500

1000

Fig. 7b. TTavg

Additional experiments using random
distributions (exponential, normal and
uniform distributions) with the same
average for TS showed that the results were
comparable to the ones measured with the
deterministic value. There were slight
increases on the response times (less than
20%) and on the number of servers
deployed (less than 10%), inducing that the
algorithm is suff iciently generic.

4.3 Server Deployment with Strong Synchronised Systems

Most services require some state synchronisation between servers. This will i ntroduce
a limit to the maximum number of clients (load) which can be processed per time
unit. It is still possible to use the algorithm on these cases with minor corrections as
long as the client load is below the maximum value supported. The average service
time increases when a new server is created (and decreases when one dies). When the
service time increases, fewer clients are serviced per time unit. In consequence, it
takes less time to reach MaxCliQ clients waiting in the queue. The ratio between
Timeout and average service time degrades until it possibly goes below 1, resulting
on an explosion of server creation (a very high PCR). The algorithm was modified to
avoid this effect: MaxCliQ and Timeout are incremented when the average service
time increases and decremented otherwise. It lets the system adapt more slowly to
peak loads.

We tested the approach on a system with a linear degradation for each server (which
models a periodic synchronisation between the servers), with the service time given
by the following formula:

()()ServiceTime NumberServers= × + × −01 1 1. α (1)

1.2

1.6

2

2.4

2.8

1 2 3 4 5

Initial Servers

P
C
R

125

250

500

1000

Fig. 7c. PCR

Table 1 shows the measurements with ClientLoad=250, Tclone=1, MaxCliQ=15,
Timeout=1.5 (initial values), and five initial servers. The columns “Servers for Tsetup”
and “Max PCR” present the number of servers needed to sustain the incoming clients
and the theoretical maximum value2 achievable for the rate between the maximum
number of clients and ClientLoad (with infinite servers). For α≥0.04 the system can
not support the load of 250 clients per tic (MaxPCR is below 1).

α Servers
for Tsetup

Max
PCR

Tsetup Tdrain TTavg TT95 TTworst Serv.
Dep.

PCR

0 25 ∞ 5 11 0.50 1.9 7.86 41 1.64
0.005 29 8 5 13.25 0.63 2.1 6.85 43.5 1.5
0.01 33 4 5 22.5 0.97 2.7 9.68 49 1.49
0.02 49 2 7.5 2.40 5.9 17.78 76 1.55
0.03 97 1.33 24.5 4.12 10.4 24.21 112 1.15

Table 1. Performance with synchronised clients

Increases to the value of α lead to reduced processing capacity gains for each new
server added to the system, and in result, to slower responses to client request peaks,
shown by the increase of TTavg and TT95. For the two higher values of α, this effect
even prevents the system from draining the clients accumulated during the
deployment of servers (Tdrain is above the simulation duration of 30 tics). The
difference between α=0.02 and α=0.03 is that the number of pending clients is much
higher for α=0.03 and the exceeding available processing capacity (PCR) is very low
(15%), resulting in higher response times (well above the simulation duration).
Without the algorithm modification the system deploys (“Serv. Dep.”) 284 servers
with TTavg=1.1 and TT95=3.2 for α=0.02, and deploys over 500 servers for α=0.03.

5. Related Work

The design of scalable systems to support worldwide applications is addressed on [7],
[21], where architectures for global location services and server replica co-operation
are proposed. There are some differences regarding the location service but this is not
the main subject of this paper. None of them, however, handles the "client peak"
invocations due to some external and uncontrolled event.

Dynamic server replication systems are proposed on [2], [5] for optimising the
bandwidth usage on the access to WWW servers. The client dissemination amongst
server replicas uses a “master” server, with the resulting scale limitations.

[12] proposes a low level approach based on fine-grained objects. The scalabilit y is
compromised by the lack of an “anycast group address” and by the use of front end
scheduling objects.

2)1.0(1 α××= ClientLoadMaxPCR

Market oriented based systems [6], [14] are proposed to bind client-server interaction.
However, the communication of “bid” messages between each client and all the
servers presents strong scale limitations.

6. Conclusions and Future Work

This paper presents a cooperative agent system that allows applications to scale to
large networks with milli ons of users. The dynamic behaviour of the algorithm in face
of a strong rise on client demand was studied and several conclusions were drawn
with the experiments.

An overall conclusion is the suitabilit y of such systems and algorithms to respond to
"client peak invocations". Traditional systems do not scale and will create severe
bottlenecks if used under these conditions.

The simulation results showed that it is possible to guarantee a limited application
response time for 95 per cent of the clients if some applications parameters are
known. Namely, the maximum values for the service time, for the clone deployment
time (related to the transmission time of the server agent, the bandwidth and the
computational resources of agent systems), and for the name resolution time. By a
correct control on the number of replicas initially deployed and the correct setting of
Timeout and MaxCliQ, an application may be ready to respond to a roughly predicted
rise on the client demand. Even when the demand is not predicted the system reacts
well , but sometimes, it can create too many servers due to a rapid increase on the
offered capacity.

The algorithm is used in conjunction with a location service, which supports the
scalable trading between clients and servers. The mutual relation between both
mechanisms is a challenging issue and a good direction for further study.

This paper covered atomic interactions between clients and servers. Multi -invocation
interactions can introduce other requirements to the algorithms and will be studied as
well .

Client implementation is also a concern. Clients may communicate from their agent
systems, or can also be implemented as mobile agents, migrating to agent systems
nearer the server they want to use. It will be interesting to see the trade-offs between
both approaches.

Acknowledgements

This research has been partially supported by the PRAXIS XXI program, under
contract 2/2.1/TIT/1633/95.

References

[1] Albitz, P., Liu, C.: DNS & BIND. O’Reil ly &Associates Inc. (1996)
[2] Baentsch, M., Baum, L., Molter, G., Rothkugel, S., Sturn, P.: Enhancing the web’s

Infrastructure: From Caching to Replication. IEEE Internet Computing, Vol. 1 No. 2,
March-April (1997) 18-27

[3] Baumann, J., Hohl, F., Radouniklis, N., Rothermel, K., Straβer, M.: Communication
Concepts for Mobile Agent Systems. In: Mobile Agents - Proceedings of the First
International Workshop on Mobile Agents (MA’97), Germany, April (1997) 123-135

[4] BEA: TUXEDO White Paper. (1996) http://www.beasys.com/Product/tuxwp1.htm
[5] Bestavros, A.: WWW Traff ic Reduction and Load Balancing through Server-Based

Caching. IEEE Concurrency, Vol 5 N 1, January-March (1997) 56-66
[6] Chavez, A., Moukas, A., Maes, P.: Challenger: A Multi -agent System for Distributed

Resource Allocation. In: Proceedings of the International Conference on Autonomous
Agents, Marina Del Ray, Cali fornia (1997)

[7] Condict, M., Milojicic, D., Reynolds, F., Bolinger, D.: Towards a World-Wide
Civili zation of Objects. In: Proceedings of the 7th ACM SIGOPS European Workshop,
Ireland, September (1996)

[8] Decker, K.: Matchmaking and Brokering. In: Proceedings of the Second International
Conference on Multi -Agent Systems (ICMAS-96), May (1996)

[9] Deng, X., Liu, H.-N., Long, J., Xiao, B.: Competitive Analysis of Network Load
Balancing. Journal of Parallel and Distributed Computing Vol. 40 N. 2, February (1997)
162-172

[10] IBM Aglets Workbench - Home Page. http://www.trl.ibm.co.jp/aglets/
[11] ISO/IEC: Information technology - Open Distributed Processing - The Directory -

Overview of concepts, models, and services. ISO/IEC DIS 9594-1, ITU-T Rec. X.500.
November (1993)

[12] Kim, W., Agha, G.: Eff icient Support of Location Transparency in Concurrent Object-
Oriented Programming Languages. In: Proceedings of the Supercomputing’95, San
Diego, December (1995)

[13] Lynch, C.: Network Information Resource Discovery: An Overview of Current Issues.
IEEE Journal on Selected Areas in Communications Vol. 13 N. 8, October (1995) 1505-
1522

[14] Mullen, T., Wellman, M.P.: A simple Computational Market for Network Information
Services. In: Proceedings of the 1st International Conference on Multi -Agent Systems
(ICMAS'95), San Francisco, June (1995) 283-289

[15] ObjectSpace Voyager V1.0.1 Overview. http://wwwobjectspace.com/voyager/
[16] OMG Inc.: The Common Object Request Broker: Architecture and Specification, Rev

2.0. July (1995)
[17] OMG Inc.: Mobile Agent Facilit y Specification. OMG Draft, October (1997)

ftp://ftp.omg.org/pub/docs/orbos/97-10-05.pdf
[18] OMG Inc.: Trading Service. OMG TC Document 95.10.6, October (1995)
[19] Ptolemy project home page. http://ptolemy.eecs.berkeley.edu/
[20] Ranganathan, M., Acharya, A., Sharma, S., Saltz, J.: Network-aware Mobile Programs.

Technical Report CS-TR-3659 and UMIACS TR 96-46, Department of Computer
Science and UMIACS, University of Maryland, June (1996)

[21] van Steen, M., Hauck, F., Tanenbaum, A.: A Model for Worldwide Tracking of
Distributed Objects. In: Proc. TINA '96 Conference, Heidelberg, Germany, September
(1996) 203-212

