Scalable Service Deployment on Highly Populated
Networks

LuisBernardo and Paulo Pinto
IST - Ingtituto Superior Témico, Lisboa Portugal
Inesc, R. AlvesRedol, 9 P-1000 Lisboa Portugal
Phore: +351.1.3100345 Fax: +351.1.3145843
{Iflb,paulo.pinto} @inesc.pt

Abstract. Very large networks with thousands of appli cations and millions of
users pose serious problems to the aurrent traditional technology. If
synchronised client behaviour exists, then the limitations are even stronger.
Cooperative gyent systems can be a suitable technology to answer to these
requirements if some apeds of the achitedure ae caefully designed.
Particular attention should be given to the trader component and to the dynamic
behaviour of the gplicaionsin response to client demand. This paper proposes
a cooperative mobile aent system with a very dynamic and scdable trading
service The system is designed to allow applicaions to deploy servers onto the
network to respond to demand making them self-configurable. Sets of
simulations were performed to study the dynamic behaviour of the overall
system, and identify the relevant tuning parameters.

Topics. Open, Scdable Agent Architedures for Telecommunications
Applicaions;, Middleware for Agent Communicaion

1 Introduction

One of the problems fadng designers of client/server applicdions, which are
deployed on large-scde networks with milli ons of users, is the dimensioning d the
server entities. Moreover, a charaderistic common to some of the gplicaions is the
posshility of a synchronous pattern onthe behaviour of the dients, producing peeks
of traffic on servers. Examples of such applicaions are eay to define and can be tele-
voting, tele-shopping, red-time sports brokering, stock brokering or applications
based oninteradive TV interfaces. These gplicaions will i nvolve alarge number of
clients, that may produce aburst of requests after a relevant event (e.g. atean scores
a point, the announcement of promotional prices, or a dealine is approaciing). It is
esentia that the goplication must satisfy the service response time requirements even
under these extreme @nditions. Therefore, both its gatic and dyramic behaviours
neal a caeful design.

An efficient design choiceis the posshility of launching a variable number of servers
to process client requests in parallel (asuming that the nature of the service dlows
server mobhility). A static goproach to the problem, using a fixed number of servers
and conventional traders, leals to inefficient resource usage solutions. either the
number of servers is insufficient or there is over-dimensioning of the servers

deployed. Most of the traditional dynamic solutions use a strictly system-based
approach, instead of a per-service solution: they rely on system comporents to
balance the requests amongst a wnstant pod of machines [2], [4], [6], [9], possbly
deploying new servers. However, a worldwide service must not be based on a limited
set of machines. Servers must be spreal worldwide near the dient’s location to avoid
bandwidth batlenedks. The dynamics onthe dient’s locéaion over time will guide the
server's deployment, resulting in lower client-server communicaion delays [20].
Such requirements can be achieved with any system providing remote objed credion
with state initialisation (such as fadtory objeds or ORB implementation repaositories
[16]). However, the distribution of the server implementation would have to be made
on al possble platforms. Mobile agent platforms provide asimpler way to deploy
persondlized services snce dl servers are obtained by cloning aninitial replica

The proposed system is based on a mobile aent system platform. Its architecture
does nat conflict with the standardization efforts of OMG [17], or some of the
available mobile gent systems ([10], [15], etc). The main differences are the
reguirements of the trader (cdled herelocation service).

Asit is described in this paper, our system asumes a scenario where dients ook for a
predse service The system does not support service discoveries based on
charaderistics [13] (price availability, etc.). Clients look for applicaions using a
unigque application reme that is resolved to a server reference by the locdion service
Each applicaion server sets an areaof the network for its srviceto be known (server
domain). Then, the locaion service splits the network dynamicdly into aress
depending on the server population, the server domains, and the locaion server’s own
load. The locdion service has a new scdable dgorithm to adapt to its own load
(lookup requests) and to advertise the services of the serversit is resporsible for. An
overview of the locdion serviceisgivenin sedion 2

Server mohile agents are aitonomous on their control over server deployment.
Servers use the dynamic topologicd information of the location service the dient
load, and the overall situation o servers that belong to the gplicaion they are
serving, to control the deployment of new servers and adapt predsely to the dient
load. The dm is to produce ahighly flexible axd scdable system that can support
millions of interadions maintaining the desired quelity of service The proposed
adaptation algorithm works as follows: ead server monitors its client load and
compil es the domains of the dients. When ape&k onthe load occurs, the server agent
reads creaing clones, and deploying them based onthe client origin information. A
market oriented algorithm is used to reverse the process - lower the number of
servers, when the dient load decreeses.

The study of the dynamic nature of the system covers too many aspeds to be
described in a single paper. In this paper we present a brief overview of the system
comporents, the server deployment algorithm and a study of the dynamic behaviour
of servers in face of arising client demand (the alaptation to the worst case). The
locdion service, which isitself aspedal dynamic servicewith its own load adaptation
algorithm, will be covered on another paper.

2 System Overview

The network provides a ubiquitous platform of agent systems, in which any agent
(server or client) can run. Each agent system is tied to a locaion server (running
locdly or on another nearby system), where dl the interfaces of the locd agents are
registered. This location server is conneded to ahers to offer a global location
service

When a dient seaches for an applicaion rame, the locaion service helps in the
binding process (the aciation to a server) direding it to the neaest server. If the
location server knows more than ore server, it will do splitti ng of the dient traffic. If
it knows that a new, and closer, server was creded it will start using the new one, and
propagates this information. When a dient comes for resolution, it will get the best
answer for that moment. The balance between the number of servers, clients and
locdion servers ads as ageneral load balancing mechanism in the system.

An applicaion may scde and respond to pedk conditions by deploying rew servers,
and thus increasing its total server processng capadty. The effediveness is
condtioned by the anount of time aserver isinadive during the dugicaion process
(which must be compared with the response time required by clients); and by the
extra overheal to maintain consistency of the shared data due to the eistence of a
new server. The intra-server synchronisation is edfic to eat applicaion (a simple
placament of an order would not need such logic).

2.1 Location Service

The locaion service is one of the major players for scdability. Its requirements
include: the necessty for fast upcdeting during the aedion of a server clone, the
propagation of frequent updates due to server migration, and the dynamic nature of
the information in the overal system (based on dynamic server domains). These
requirements introduce a high overhead, which invalidates sme of the current
technicd solutions, based on static hierarchicd systems. Particularly:

« The use of cached values at remote nodes makes afast change on the configuration
information impossble [1].

e The use of full path names which define completely the search path [1], [11], [18]
requires the use of a “home” server to keep all servicerelated information (creding
a battleneck), or the backpropagation d a modificaion through the entire locaion
network (making aupdate a ostly operation).

None of these techniques must be present on a scdable ad highly mobile system.
First of al, the gplicaion rames must be flat ([21] readied a similar conclusion).
Seowondy, the seach path, which is now independent from the name structure, must
be performed on a step-by-step basis, through a path of locaion servers where eat
one @ntains routing information indexed by the gplicaion name. Thirdly, this sep-
by-step path should be tuned by the load and charaderistics of the overall system.

The routing information for the path is based on service references. References are
either the full applicaion rame or incomplete information about the gplication just
to dred the seach to another locaion server. The objedive is to kee references
small and easy to update.

One important feaure is how the locaion service scdes to alarge population. We use
a mixture of meshed and herarchicd structure, where locaion servers at eadh
hierarchicd level interad with some of the others at that level and (possbly) with one
above. Higher hierarchicd levels aways have incomplete information about the
avail able services. Additionally, the hierarchicd structure and the scope of the mesh
change dynamicdly according to the load of the system, and to the size of the server
domains.

The size of the server domain is srvice spedfic. For instance, a car parking service
would simply advertise on the surroundngs of each car park, while apopular lotto
broker service would advertise on a broader range (pricing schemes could be a
deterrent to artificialy large domains). The structure of the locaion service hierarchy
(hierarchicd levels and meshes) will vary to gather the necessary number of agent
systems the server wants in its domain. Higher hierarchicd levels offer a broader, but
lessdetailed vision d the services available. On the other side, clients control their
seach range. Due to ladk of depth, or incomplete information, resolutions can fail,
and a deeper seach must be tried.

Figure 1 shows an example of the locaion service The lowest plane, the agent system
plane, has ts of agent systems forming meshes. The second and third planes siow
two hierarchicd levels of the locadion service (with meshes in ead ore, and upvard
conredions not designed). In this
particular case, a reference to the
server 's’ is known completely on
al agent systems at the server
location's domain (darker grey area).
The lighter grey area represents the
scope where incomplete information
is known (the reference to the
location server associated with the Fig. 1. Locaion Service Network Model
agent system where the server is

running).

3 Server Deployment

A goodmeasure of the quality of servicefor this g/stem is the global server response
time to client requests. For ead applicdion, this time must be wntrolled within
spedfic bounds. It includes. the time to resolve the applicaion reme to a server
reference plus a waiting time on the server due to client load, plus a service time

dependent on the gplicaion (which depends on whether it is a single RPC or a
sesgon, the overheads for distributed data ansistency, etc.).

The ntroll able system parameters are the number of servers deployed, their locaion
and eath o the server domains. The main parameter will be the number of servers,
which defines the total available server processng capadty. At some instant, the
“procesdng capadty ratio” (ratio between the number of servers deployed and the
number of clients entering the system per time unit multiplied by the average service
time) quantifies the avail ability of processng resources to satisfy the demand of new
clients. The variation d the waiting time depends on the value of the processng
cgpadty ratio (PCR) and on the distribution of clients per server. It gets higher when
the PCR is below one, and gets lower otherwise (assuming a completely balanced
system). As clients are boundto servers based on the distance axd onthe relative
importance of the server (broader server domains get more dients), some unbalancing
can exist depending onthe relative distribution o clients.

3.1 Deployment Algorithm

The number of servers and their locaion could be configured if the service usage
peks and the origin of the requests could be anticipated. Unfortunately, for most of
the goplications, thereis only avague forewarn of how much the "pegk load" may be,
or when it will happen.

The proposed algorithm may be used with various client-server interadion methods
[3]. However, it provides the best results when the interadion methods alow servers
to know the predse number of clients using a spedfic server (server’s load). This
knowledge @n be obtained from the dient pending requests on the server's inpu
queue (either sesson conredions or RPC invocdions). Our agorithm uses this
information as well as locd madine load, ignoring the number of clients that are
trying to read the server and fail. It also compiles the dients origins and keeps a
statistic indexed by the location server identifiers.

When the dient load goes above atop threshold value, the server credes and deploys
a new server. This adion is isolated. It does not involve interadion between
applicdion servers. The new server’s locaion server is ®leded amongst the most
frequent sources of agents (locd or not). The new server is creaed on an agent system
picked from alist returned by the seleded location server. The new server will only
be completely available to run client requests after T, which is the time to creae a
clone on the remote aent system, plus the delays at the locaion service
(disemination d the new clone’'s erver reference). During this period, new clients
continue to hind to an aready overloaded server. So, the triggering mecdhanism of the
top threshold value is disabled for a duration dependent on T, .. When the total
number of pending clients is known, a temporary increase on the top threshold value
can be made to include an estimate of the number of clients that would be processd
by the new server during the disabled period.

If the demand is very high, and the waiting time exceels largely the response time,
the server can unbind some of the dients, or can mutate itself (i.e., close the old
interface ad creae afresh ore). The number of pending clients (if available) or the
number of conseautive load owerflows are used to deted such condtions. Unbinds
and mutation will force a new resolution prese for al waiting clients and a
redistribution of the dientsfor the avail able servers.

A market-based control technique is used to reverse the dgorithm. When the load
goes below a bottom threshold, the server sends a message with a “request for bids’
to al the neighbour servers (within a distance range in the location network),
requesting one of them to take its place Requested servers will answer with a bid,
stating if they can expand their domain, and stating their load. The requester will wait
for answers during a time interval, and seleds the best bid within the minimum
distance with the minimum load, afterwards. Notice that the value of the time interval
isnot as relevant for the system performance @ in ather market oriented systems (e.g.
[6], [14]), where the system resporse time is diredly related to this value. The bottom
threshold is only enabled for dynamicdly creaed servers. Permanent servers (creaed
by service provider's gedfication) live & longas rvice providers want.

The presented algorithm scdes to broader networks than alternative approaches
(transacdtion managers [4], load balancing systems [9], broker/matchmaker agents [8],
or market oriented systems [6], [14]) since the alaptation to overload conditions is
based on an isolated algorithm. However, it may cause the deployment of a higher
number of servers gnce the locaion service balance dient requests amongst servers
known locdly not taking into acount the server's instantaneous load. The
equili brium between the dient load and the number of servers deployed is achieved at
limited ranges, instead of at aglobal level.

4 Dynamic Behaviour

The anaysis of the dynamic behaviour of the system was conducted using a
simulation model. The set of tests presented focused on the alaptation to a constant
demand from clients. The simulation model runs all the services described so far but
the interference of some algorithms was avoided. The dfed of the locdion service
was reduced by setting a very low-resolution time (compared to the applicaion
service time), and by dsabling the dynamic change of the hierarchy. Nevertheless it
gtill runs the gplicaion rame distribution algorithm, which introduces a delay
between the deployment of a new server and the stabili zation of the locaion service
information (proportional to the transmisson delay between servers). The dfeds of
the variation d the latency on the communication between agents were disabled, by
setting it to a onstant value. This very symmetricd scenario produces highly
synchronized readions on servers, but it is clealy the worst case.

With resped to the alaptation algorithm, we studied three dternatives for
redistributing clients when a dient load peak happens. The first is to mutate the server
completely, to even avoid those dients that made the name resolution but are not yet

in the queue (total unbind). The mutation is exeauted after the new clone becomes
operational if the queue is gill overloaded. When several clones are creded,
deadivation is delayed urtil the last server starts. The secmnd is to unbind those
clientsin the queue whose waiting time exceeds Timeout (partial unbind). The third is
to serve dl clients not doing any unbinding (none).

4.1 Simulation Environment

The simulator was developed using the "Discrete Event” model on the Ptolemy [19]
simulation system. All tests were conduwcted ona network presented in figure 2, with
132 agent systems and 19 datic locdion
servers. Results were mlleded at the end o
eadhh measuring interval of 0.5 urts of
simulation time. The duration of ead
simulation was 30 time units (tics).

The simulation assumes an atomic interadion
between the dient and the server agents. A
client is born and lives urtil it can make an
invocdion to the server. The total number of Fig. 2. Simulated meshed network
clients accessng a server is suppcsed to be

known. Our main results are the dient’s lifetimes, which are the overal applicaion
resporse times.

The gplicaion and locaion service servers are modelled by a queue defined by a
service time probability function, T, and T, respedively. For al the experiments
reported in this paper, T, and T, were deterministic functions with the values 0.001
and Q1 ticsrespedively. The transmissontime was st to 0.0001 tics. Servers use the
number of requests in the queue & an indicdion d client load. The top threshold
valueis cdled "Maximum Client Queue Trigger Level” (MaxCliQ) and the disabled
time dter a doneislaunched is1.5timesT,

clone®

The dient credion is defined by an inter-client generation statistic, and clients are
deployed with a uniform distribution to a set of 125 agent systems. The inter-client
deployment statistic is defined by a uniform distribution on the interval [O,
2/ClientLoad], where ClientLoad defines the average number of clients that enter
into the system during atime unit.

4.1.1 Results

The simulator measures the dient's lifetime, the number of clients and servers, and
their state. Therefore it is possble to have an evolution over time of the aserages on
the measuring intervals. Figure 3 shows the evolution of: New Clients, the number of
clients which entered the system; Unbinds, the number of clients unbound duing the
interval; Pending Clients, the number of clients waiting on aeues (of both
application and location servers); Ending Clients, the number of clients which
terminated during the interval; and Processing Capacity, the number of servers times

the servicetime (which measures the number of clients which can be processed onthe
interval). The second gaphic shows the evolution of the average global response time
per client measured on eech interval, represented by TT (Total Time). The arves
were measured with ClientLoad= 250 clients per tic (125 new clients per measuring
interval), using partial client unbind with T, = 1, MaxCli Q= 15 clients and Timeout=
1.5. Itisalso possble to cadculate: the average vaue, TT,; the worst client life value,

TT,..«; and the time value that includes 95 percent of al clients' lifetimes, TT95.
500 — New Clients 18
16
M,
400 —— Unbinds i: /A
300 2T
Tl
200 Pending Clients 0.8 vl \
100 | A e ’ o I' \\
0 %\/\’V\+ ‘ Ending Clients 3:3 / \
0 ‘ 1 20 30 0
' ——Processing 0 10 20 30
TRUD Torein |1ME Capacity Time

Fig. 3. Service Response — evolution on time of the number of clients and of the average total
delay

As onas client requests gart (at tic 1), the number of pending clients grows and the
system starts to adapt. At T the processng powver deployed is already enough for

the dient load. After T, trple number of pending clients darts to deaease. TT
continues to grow just for a short while dter this point (the arves are dmost equal
for the experiment of figure 3 because unkind was used). T, measures the instant
when the number of pending clientsis below arrival rate for the measurement interval
(new clients). It is clea how the system gets dable with a very low and constant
resporse time. All the presented values are aserages of at least two experiments, and
can be scded to an arbitrary system using the relation between the service time

values.

4.2 Results with Weak Inter-server Synchronisation
Figure 4 present the global response time histograms for the three unbind methods.

The resulting TT,,, and standard deviation values for partial, total and nobinds are
respedively: 0.52+0. 81, 0.42+0.99 and 0.93%1.49 tics. Both unbind
methods improved the system resporse time, with a better overall performance for the
server mutation. However, the measured pesk number of unbound clientsis very high
(274 during a measurement interval) compared to unbound clients with partial
unhind (98) and to the arerage number of new clients (125), resulting in PCR values
of respedively 1. 64, 3. 86 and 1. 38 (41, 97 and 35servers). A minimum of 25
servers was neaded to satisfy the new client requests.

A particularly nasty side dfed of the total unbind procedure for our very symmetricd
scenario is the following: new servers receve a'"ped" of both redistributed clients

and rew ones, which may be higher than MaxCliQ, generating unnecessary new
clones. The partial unkind method is used for the remaining experiments, becaise it is
the one which off ers the best trade-off between the deployment cost and the measured
response times.

10000
1000 —— Partial
100 Hee IA‘ A —— Total

10+l ? gl | None
1

0 2 4 6 8 10
T

Fig. 4. Histogram! of response times for: partial client unbinding (with Timeout=1.5), server
deadivation (total), and no unbinding, ClientLoad=250, MaxCli Q=15, five starting servers

4.2.1 Parameters Configuration

For ead application, the values for servicetime and T, will i nfluence the minimum
achievable response time. Figure 5 shows the system performance for five values of
T, When apeak of 250 clients per tic isinjeded on a system with five initial servers
(initial capadty of 50 clients per tic). As expeded, T, depends srondy on T,
resulting in more pending clients for higher T, values. Consequently, client lifetime
(TT95 and TT,,) increases, and a higher number of servers is deployed (PCR). For
the smallest value of T (0.2) it is gill noticedle adrain time, which exists even for
T, = 0, due to buffering on the server queues (MaxCliQ is above z&0).

3 14

12
x 2 1% T —eo—TTavg
0, — —— =0 —m TTO5

2 L
‘ 0 T setup
0 1 2 0 1 2 Tdrain
Tclone Tclone
Fig.5. T, sensibility with ClientLoad=250, MaxCli Q=15, Timeout=1.5, five initial servers

Several parameters can be set to optimise the dgorithm performance Figures 6a, 6b
and €c show the distribution of TT95, TT,,, and PCR for a set of 25 pairs of values for
MaxCliQ and Timeout, with ClientLoad= 250 clients per time unit, T, =1 and five
initial servers.

10 valueswere mnverted to 1 to allow alogarithmic representation of the number of samples

3 Timeout
Timeout P

@l2-14

15 m35-4 15 ml12

Os3-35 L 00.8-1
! 0253 00.6-0.8
‘ 0.5 m2-25 05 m0.4-0.6
5 10 15 20 30 @152 5 10 15 20 30 m0.2-0.4

MaxCliQ MaxCliQ
Fig. 6a. TT95 Fig.6b. TT,,
3 imeout The Timeout value ontrols the

redistribution rate between servers, and
0253/ MaxCliQ controls the trigger vaue to
02251 |aunch new servers. Together, they control

m152l the system resporse speal to a pesk of

) el requests. The figures <dow a strong

5 10 15 20 30 dependency on both parameters with an
MaxCliQ interesting trade-off: if the response time

has to be very low, then PCR will rise

Fig. 6¢c. PCR (generating too many clones). The

configuration must be defined considering
the gplication requirements. For instance, a fast response (TT,,, <4 * T, = 0.4 tics)
implies PCR > 2.5. The fastest measured resporse time (MaxCliQ=5 clients,
Timeout=1 tic) had 99% of clients with a lifetime lessthan 2. 725 tics. The best
possble resporsetimeis T, plus srvicetime (1.1), with the creaion o one server
for ead waiting client. For Timeout values below T, clients get unbound before a
new server is deployed, which ariginates a high number of credions, and the
measured high value for PCR.

Figures 7a, 7b and 7c show the distribution o TT95, TT,, and PCR for twenty
configurations of different ClientLoad and initial number of servers, with
MaxCliQ=15, Timeout=1.5and T___=1.

clone™

The results show aminor increase of the response times (TT95and TT,,) and d PCR
(theratio between number of servers deployed and the minimum necessary) compared
to the increase on ClientLoad (800%), which proves the dgorithm scdability. If the
total number of clients bound to a server is not known then the response would be
dower, and the ratio would deaease. However, it would always be low, since the
number of servers deployed grows exponentialy. The initial number of servers has a
grea influence on the three parameters, spedally for lower ClientLoad values. When
the load is high, the aaptation is done quicker due to a floodng of servers and the
PCR gets higher (over-deployment of servers). In this case, the initial number of
servers beaomes irrelevant. It isinteresting to note that for ClientLoad = 125and five

initial servers the system moves snoathly and the response times are very acceptable.
This proves that some load expedations from the goplicaion can produce very stable
adaptations.

2.7 0.6
25 *7\ — 0.55 ‘ = —e—125
T S— e P e N
[= 500 F 045 5
13 —* \\n 1000 04 \:_,_;“ 1000
15 . : - 0.35 T .
1 2 3 4 5 1 2 3 4 5
Initial servers Initial servers
Fig. 7a. TT95 Fig. 7b. TT,,
28 | Additional experiments using random
2,41‘\¥ —e—125 distributions (exponential, normal and
B PN o i uniform distributions) with the same
16 \ \. igge average for T, showed that the results were
12 ‘ “ comparable to the ones measured with the
1 2 3 4 s deterministic value. There were dight
Initial Servers increases on the response times (less than
20%) and on the number of servers
Fig. 7c. PCR deployed (lessthan 10%), indwcing that the

algorithm is sufficiently generic.

4.3 Server Deployment with Strong Synchronised Systems

Most services require some state synchronisation between servers. This will i ntroduce
a limit to the maximum number of clients (load) which can be processed per time
unit. It is gill posshle to use the dgorithm on these cases with minor corredions as
long as the dient load is below the maximum value supported. The average service
time increases when a new server is creaed (and deaeases when ore dies). When the
service time increeses, fewer clients are serviced per time unit. In consequence, it
takes less time to reaty MaxCliQ clients waiting in the queue. The ratio between
Timeout and average service time degrades until it possbly goes below 1, resulting
on an explosion d server credion (avery high PCR). The dgorithm was modified to
avoid this effed: MaxCliQ and Timeout are incremented when the average service
time increases and deaemented aherwise. It lets the system adapt more slowly to
pek loads.

We tested the goproach ona system with alinea degradation for each server (which
models a periodic synchronisation between the servers), with the service time given
by the foll owing formula:

ServiceTime= 0.1x (1+0(x (NumberServers—l)) D

Table 1 shows the measurements with ClientLoad=250, T, =1, MaxCliQ=15,

clone
Timeout=1.5 (initial values), and five initial servers. The wlumns “Servers for T, "
and “Max PCR’ present the number of servers needed to sustain the incoming clients
and the theoreticd maximum value? achievable for the rate between the maximum
number of clients and ClientLoad (with infinite servers). For a=0.04 the system can

not support the load of 250 clients per tic (MaxPCRis below 1).

a Servers | Max | T T

Setup drain ava worst

TT,,|TT95| TT Serv. | PCR

for T, | PCR Dep.
0 25 0 5 |11 |050 |19 (786 |41 |1.64
0.005| 29 8 5 [18325]|0.63 |21 |6.85 435 |15
0.01 33 4 5 [225]0.97 |27 |9.68 |49 149
0.02 49 2 |75 240 |59 |17.78 |76 |155
0.03 97 1.33| 245 412 |104 |2421 |112 |115

Table 1. Performancewith synchronised clients

Increases to the value of a leal to reduced processng capadty gains for each new
server added to the system, and in result, to slower responses to client request pe&ks,
shown by the increase of TT,,, and TT95. For the two higher values of a, this effedt
even prevents the system from draining the dients acawmulated during the
deployment of servers (T,,, is above the simulation duration of 30 tics). The
difference between 0=0.02 and 0=0.03 is that the number of pending clients is much
higher for a=0.03 and the exceeding avail able processng capadty (PCR) is very low
(15%), resulting in higher response times (well abowve the simulation duration).
Withou the dgorithm modificaion the system deploys (“Serv. Dep.”) 284 servers
with TT, =1.1 and TT95=3.2 for 0=0.02, and deploys over 500 servers for a=0.03.

5. Related Work

The design of scdable systems to suppat worldwide goplicaionsis addressed on[7],
[21], where achitedures for global location services and server replica @-operation
are proposed. There ae some diff erences regarding the locaion service but thisis not
the main subjed of this paper. None of them, however, handes the "client peak"
invocations due to some external and urcontrolled event.

Dynamic server replicaion systems are proposed on [2], [5] for optimising the
bandwidth usage on the accesto WWW servers. The dient disemination amongst
server replicas uses a “master” server, with the resulting scde limitations.

[12] proposes a low level approach based on fine-grained objeds. The scdability is
compromised by the lack of an “anycast group address’ and by the use of front end
scheduling objeds.

% MaxPCR =1/(0.1x ClientLoad xa)

Market oriented based systems [6], [14] are proposed to bind client-server interadion.
However, the communicaion o “bid” messages between ead client and al the
servers presents drongscde limitations.

6. Conclusions and Future Work

This paper presents a cooperative aent system that alows applicdions to scde to
large networks with milli ons of users. The dynamic behaviour of the algorithm in face
of a strong rise on client demand was gsudied and severa conclusions were drawn
with the experiments.

An oweral conclusion is the suitability of such systems and algorithms to respond to
"client pe&k invocaions'. Traditional systems do nd scde ad will crede severe
bottlenedks if used under these conditions.

The simulation results showed that it is posgble to guarantee alimited applicaion
resporse time for 95 per cent of the clients if some gplicaions parameters are
known. Namely, the maximum values for the service time, for the clone deployment
time (related to the transmisson time of the server agent, the bandwidth and the
computational resources of agent systems), and for the name resolution time. By a
corred control on the number of replicas initially deployed and the @rred setting o
Timeout and MaxCliQ, an applicaion may be ready to respond to a roughy predicted
rise on the dient demand. Even when the demand is not predicted the system reads
well, but sometimes, it can creae too many servers due to a rapid increase on the
off ered cgpadty.

The dgorithm is used in conjunction with a locaion service, which supports the
scdable trading between clients and servers. The mutua relation between bah
medhanismsisa dchalengingissie and agood dredion for further study.

This paper covered atomic interadions between clients and servers. Multi-invocation
interadions can introduce other requirements to the dgorithms and will be studied as
well.

Client implementation is also a ancern. Clients may communicate from their agent
systems, or can also be implemented as mobile aents, migrating to agent systems
neaer the server they want to use. It will be interesting to seethe trade-offs between
both approaches.

Acknowledgements

This reseach has been partidly supported by the PRAXIS XXI program, under
contrad 2/2.1/T1T/1633/95.

References

(1]
(2]

(3]

(4]

(9]

6]

(7]

(8]
(9]

(10]
(11

(12

(13

(14]

[15]

[16]

(17)

(18]
(19
[20]

(21

Albitz, P, Liu, C.: DNS & BIND. O'Reilly & Assciates Inc. (1996)

Baentsch, M., Baum, L., Molter, G., Rothkugel, S., Sturn, P.: Enhancing the web's
Infrastructure: From Cading to Replicaion. IEEE Internet Computing, Vol. 1 No. 2,
March-April (1997) 18-27

Baumann, J., Hohl, F., Radouniklis, N., Rothermel, K., Strafer, M.: Communicaion
Concepts for Mobile Agent Systems. In: Mobile Agents - Procealings of the First
International Workshop on Mobile Agents (MA’97), Germany, April (1997) 123-135
BEA: TUXEDO White Paper. (1996) http://www.beasys.com/Product/tuxwpl.htm
Bestavros, A.. WWW Traffic Reduction and Load Balancing through Server-Based
Cading. [IEEE Concurrency, Vol 5N 1, January-March (1997) 56-66

Chavez A., Moukas, A., Maes, P.: Chalenger: A Multi-agent System for Distributed
Resource Allocation. In: Procealings of the International Conference on Autonomous
Agents, Marina Del Ray, California (1997)

Condict, M., Milgjicic, D., Reyndds, F., Bolinger, D.: Towards a World-Wide
Civili zation of Objeds. In: Procealings of the 7" ACM SIGOPS European Workshop,
Ireland, September (1996)

Dedker, K.: Matchmaking and Brokering. In: Proceedings of the Second International
Conferenceon Multi-Agent Systems (ICMAS-96), May (1996)

Deng, X., Liu, H.-N., Long, J., Xiao, B.: Competitive Analysis of Network Load
Balancing. Journa of Parallel and Distributed Computing Vol. 40 N. 2, February (1997)
162-172

IBM Aglets Workbench - Home Page. http://www.trl.ibm.co.jp/aglets/

ISO/IEC: Information technology - Open Distributed Processng - The Diredory -
Overview of concepts, models, and services. ISO/IEC DIS 9594-1, ITU-T Rec X.500.
November (1993)

Kim, W., Agha, G.: Efficient Support of Location Transparency in Concurrent Objed-
Oriented Programming Languages. In: Proceealings of the Supercomputing 95, San
Diego, Decamber (1995)

Lynch, C.: Network Information Resource Discovery: An Overview of Current Isaues.
IEEE Journal on Seleded Areas in Communicaions Vol. 13 N. 8, October (1995) 1505
1522

Mullen, T., Wellman, M.P.: A simple Computational Market for Network Information
Services. In: Procealings of the 1st International Conference on Multi-Agent Systems
(ICMAS'95), San Francisco, June (1995) 283-289

ObjedSpaceVoyager V1.0.1 Overview. http://wwwobjedspacecom/voyager/

OMG Inc.: The Common Objed Request Broker: Architedure and Spedfication, Rev
2.0. July (1995)

OMG Inc.: Mobile Agent Fadlity Spedficaion. OMG Draft, October (1997)
ftp://ftp.omg.org/pub/docs/orbos/97-10-05.pdf

OMG Inc.: Trading Service OMG TC Document 95.10.6, October (1995)

Ptolemy projed home page. http://ptolemy.eec.berkeley.edu/

Ranganathan, M., Acharya, A., Sharma, S., Sdtz, J.: Network-aware Mobile Programs.
Tedchnicd Report CS-TR-3659 and UMIACS TR 96-46, Department of Computer
Science and UMIACS, University of Maryland, June (1996)

van Steen, M., Hauck, F., Tanenbaum, A.. A Mode for Worldwide Tradking o
Distributed Objeds. In: Proc. TINA '96 Conference, Heidelberg, Germany, September
(1996) 203-212

