
QoS Control: an Application Integrated Framework

João Bom2, Paulo Marques2, M iguel Correia3, Paulo Pinto1,2

1Instituto Superior Técnico, Lisboa
2INESC, R. Alves Redol, 9 P-1000 Lisboa, Portugal

3Universidade de Lisboa, Faculdade de Ciências, Lisboa
{joao.bom, paulo.marques, paulo.pinto} @inesc.pt mpc@di.fc.ul.pt

Abstract: Network technology is becoming simpler in
order to support the widest possible range of user
applications. Therefore, the specific requirements of each
application must be performed outside of the network and
the adaptation mechanisms should be done by the
applications. For the case of multimedia applications the
programming task can even be more simplified if several
“ low-level” aspects can be made transparent by the use of
a suitable framework. This paper presents such a
framework with some algorithms to control some of the
previous aspects, namely data handling and dynamic QoS
control. It provides the application with a mechanism to
constantly adapt the quality of the continuous media being
transmitted. The algorithm takes into account not only the
network conditions but the end host conditions as well.
Some experiments are presented.

Keywords: Distributed Multimedia; Quality of Service;
Dynamic QoS Control; Adaptation Algorithms

1. Introduction

On the road to construct future-proof multiservice
networks, the solution has been to reduce as much as
possible the features provided by the network itself. Frame
relay networks started this approach and ATM networks
followed suit. Therefore, all the application requirements
have to be handled at the end machines, outside of the
network. The variety of application requirements is large
and the new Transport protocols have already a structure
where different behaviours can fit. The interface to the
network is based on contracts about specific semantics of
the traffic (constant or variable bit rate), its real-time
characteristics and the amount of bandwidth needed. This
type of interface is still at a too low-level for multimedia
applications and the concept of Quality of Service (QoS) is
seen as appropriate to fill in the gap.
On the other hand, multimedia applications have a strong
component on continuous data handling (audio and
video), some of which is tedious and complex for a direct
treatment by the application but could easily be delegated
to autonomous components under application supervision.
Multimedia data has its own high level semantics (think
about M-JPEG or MPEG) and the adjustments to the

working conditions can be characterized easily between
the application needs and the component behaviour. This
division has another advantage: the logical part of the
application is programmed as if the resources were
unlimited and the QoS parameters will adjust to the
reality. This enables the use of the same application over
network and machine technological improvements and
eases the construction of new application because only the
logical part and the interface to the components have to be
done. This division also fits well with the characteristics
of most of the current operating systems. They provide a
best effort service. Their processing speed depends on the
number of processes and on their "weight". A heavy load
on the host can seriously affect its speed in treating
multimedia data. Under these assumptions, it is natural to
think on using the networks as if they are also offering a
best effort service, always trying to get the most out of the
current conditions. ATM networks are fairly appropriate
to multimedia data because they support variable bit rate
and can allow the user to overpass the contract at his
responsibility. Due to the characteristics just outlined this
responsibility aspect is not a problem. Moreover, traffic
control on ATM networks is very conservative [1] leaving
enough resources to use at application discretion.
This paper proposes an integrated framework to develop
multimedia applications which takes care of the tedious
parts of data handling and controls the QoS. There is a
division between generic issues and issues that depend on
the specific media being managed, that have to be
considered whenever a new media is introduced. The data
handling part includes the capture, the sending and
receiving to and from the network, and the presentation of
a media without a direct intervention of the application.
The QoS aspect has a feature we consider important. QoS
is expressed in terms of QoS parameters. We allow the
programmer to express the QoS (s)he wants in terms of
QoS parameters that are meaningful to him and the
application (for example: frame rate, window size,
latency); the architecture translates these parameters into
system parameters like packet loss and jitter.
The specific QoS adaptation algorithm proposed here
defines a scale of QoS working levels and the framework
component increases or decreases its level according to the
network and the end systems conditions. The application
can be notified about the work being done on its behalf.

For instance, if the lowest level of the scale is reached and
the system should have even gone lower, a decision, like
terminating the connection, has to be made by the
application.
The inclusion of the end hosts conditions in the adaptation
algorithm, another feature not seen on other works, makes
sense because the machines are one of the bottlenecks
when using new networks, such as ATM (as the
experiments proved).
The paper starts with some brief considerations about
Transport levels and ATM network usage. Then, a brief
description of the framework is given followed by a
description of the adaptation algorithm. The rest of the
paper presents some results of the experiments, analyses
the related work and draws some conclusions.

2. Protocols and networks

TCP is not suitable for continuous media transmission for
some reasons. Firstly it imposes its own transmission rate
to the data, not the one that the application wants and
needs. The "slow start" and the congestion control
mechanisms are the main reasons for this behaviour.
Secondly, TCP delivers all data without errors, doing
retransmissions if necessary. This is not needed for
multimedia data and, in general, retransmitted data will
not be delivered in time for presentation, consuming extra
bandwidth and processing power, possibly increasing
congestion and losses.
New protocols, more adequate for continuous media data,
started to appear. The Real Time Protocol, RTP [16], is
one of these protocols and is the one we used in the
experiments. More than the specific choice of the RTP,
the following four ideas make it adequate for multimedia
data and should be present in Transport protocols that can
handle application requirements outside of the networks:
1. RTP, does not impose an error correction mechanism.

It has a control protocol, RTCP, that exchanges
monitoring information like the packet loss rate and
the interarrival jitter between the sender and the
receiver ("receiver reports" and "sender reports").
Although the standard does not propose any control
algorithm, the adaptation algorithm of our framework
can fit in this place.

2. It uses Application Level Framing (ALF) [7]: the unit
of communication has a meaning to the application.
For example, for video there is the knowledge of a
frame and not only a couple of segments.

3. It uses Integrated Layer Processing (ILP) [7]: the
processing overhead caused by the existence of
several layers is not acceptable for multimedia so an
integrated layer is used. Normally RTP is
implemented as part of the application. We do not use
this approach because we do not want the application
to manage multimedia data directly.

4. RTP is a generic protocol, independent of the media
being transported. The aspects related to specific
media types are defined separately in profiles [15].

A natural way to use ATM networks as a best-effort
service might be the Available Bit Rate (ABR). However,
ABR was designed to serve data applications that can
control changes on bandwidth usage. It has a strict control
mechanism based on cells (not video frames, or audio
spurts) and is very strict about losses (data applications are
rather sensitive to cell losses). Clearly, ABR is not suitable
for multimedia. A better approach is to use Variable Bit
Rate (VBR) services and work over the contracts using
priorities (CLP=1). We assume that the UPC/NPC
mechanism uses cell tagging until the Peak Cell Rate
(PCR) value and discards cells after that. Therefore, a
video connection, for instance, should set the PCR in
accordance to the frame length, but can set the Sustainable
Cell Rate (SCR) to a value lower than the actual value it
intends to use (just above the minimum QoS level, for
instance).

3. Management framework

The management framework’s main goal is to simplify the
programming of distributed multimedia applications.
More specific goals are: (1) to manage the QoS in a best-
effort environment; (2) to handle the multimedia data on
behalf of the application (capture / send / receive /
present); (3) to hide the lower level aspects permitting the
application to work only with higher level QoS
parameters.
Although the framework handles autonomously most of
the operations related to continuous media, the application
can have different degrees of supervision over this
management by exchanging information with other
components. Figure 1 shows the various components of
the framework and a brief description of the more
important ones is given below. A more complete
description of the framework can be found in [2].

Aplications

QoS Manager Media Device
Manager

RTPRTCP
Control

Data

Network

Lower level protocols

Device drivers

Figure 1. Management framework: configuration of the
components in one of the system’s hosts.

The QoS Manager and the Media Device Managers are
the main entities to accomplish the framework goals. The
Device Drivers are just wrappers around the video (image,
audio, etc.) input and output device drivers.

3.1 Media Device Managers

The Media Device Managers (MDMs) manage a media on
behalf of the application. At one host the MDM gets
media samples from an input device driver and sends
them to the network (to RTP); at the destination host it
gets the data from the network and delivers it to the output
device driver. These components impose the schedule of
capture and presentation; they do some buffering to filter
jitter; and they do all the other tasks that the application
would have to do to deal with the media samples.
The MDMs are media specific. There is one MDM per
type of media: MJPEG video, MPEG video, ulaw audio,
etc..
MDMs do not control QoS. This is performed by the QoS
Manager that just informs the MDMs of the decisions it
took. It is responsibility of the MDMs to execute these
decisions in a medium specific way. At the beginning of a
connection it is also the MDM that informs the QoS
Manager of the values to be negotiated with the network
for a certain configuration of QoS. So, the QoS Manager
works with general Programming Level QoS parameters
(frame rate, frame loss rate, Q factor, etc.) whereas the
MDMs translate these parameters into System Level QoS
parameters (packet size, bandwidth, jitter, etc.).

3.2 QoS Manager

The QoS Manager is the entity that does the QoS
adaptation to the system conditions in a media
independent way. It is where the QoS control algorithm
(section 4) is implemented. Media specific valuations and
operations are left to the MDMs.
Initially the QoS Manager receives a QoS scale from the
application with the working levels of the algorithm, and
the indication of the initial level. An example of such a
scale, expressed simply in terms of the video QoS
parameter "frame rate" is: [25, 20, 15, 10]
(frames/second). These are the frame rate working levels
for the system. The desired value could be 25 fps but 10
fps is still acceptable (each level of the scale can have
several parameters, quality factor for video, image size,
colour or black and white, etc.).
If the application deals with more than one continuous
media it can also define relations and priorities between
media streams and sets of media streams, called composed
media streams. For example, if an application is sending
one audio and one video streams it can define that the
audio has higher priority than the video so that video QoS
will be decreased first, in case the system conditions
impose a QoS adaptation.
The application can define the degree of knowledge and
intervention in the control algorithm it wants to have. It
can tell the QoS Manager which events it wants to be
informed of. At least, the QoS Manager always informs
about the impossibility to sustain even the lowest level of
QoS of the scale requiring an action by the application.
The application can decide to provide a different scale

with lower levels of QoS, to close the stream, etc.

4. QoS Monitor ing and Control

QoS management consists of monitoring – determining
the QoS the overall system (network and hosts) can
deliver – and control – adjusting the QoS of the
application to that value. The reason to do this adaptation
is that asking more QoS than what the system can give,
produces a session with lower QoS than the correct one.
We prove this statement in one of the experiments of
section 5. A brief outline of the algorithm is given here.
For a more complete description, see [3].
The QoS monitoring is based on the RTCP receiver
reports. The sender sends data to the receivers using RTP.
The receiver sends these reports back to the sender. We
did not make use of the sender reports of the RTCP.
The algorithm uses three values carried in the RTCP
receiver reports. The first one is defined in the standard
[16] and is used to monitor the network conditions:
1. packets lost: the number of packets lost in the

network. The field in the receiver reports carries the
cumulative number of packets lost; the packets lost in
an interval of time is obtained by subtraction of one
value and its predecessor.

 The other two were introduced as profile-specific
extensions in order to measure the conditions at the end
hosts:
2. too_late: number of packets/frames not presented

because they were delivered too late, due to network
or end hosts conditions.

3. nshown: number of packets/frames not presented due
to a heavy load at the receiver that prevented the
MDM to get active in time for presentation.

The percentage of the total packets/frames loss in a time
interval is given by:

losses = packets lost + too_late + nshown
 total number of packets

To avoid the control algorithm from being too sensitive to
changes, it acts based on a filtered losses value:

filtered losses = average(last N losses)

The control algorithm is a closed control loop. Monitoring
gives the value of the filtered losses which is then used to
decide the system working level. This working level will
influence the number of losses that will be reported by the
receiver (figure 2).

RTCP

RTPRTP data

RTCP Reports
QoS Algorithm

Rate,
Q Factor

Sender ReceiverNetwork

Figure 2. QoS control scheme

As any closed control loop, the round trip delay is
important to the reaction time of the system. This aspect
will be covered by an experiment.
The control algorithm works in three stages. The fir st
stage is used as a first approach to the problem, assuming
a transient small problem occurred. This is the normal
working stage except when the system is working at its
highest QoS level. The action to be taken is to drop a
small amount of data. The concrete action is media
dependent and is executed by the MDM. An example of
such action is the discard of an MPEG B frame or a
complete M-JPEG frame.
The second stage is entered when the filtered losses
passes a higher level λs. In this case the working level is
reduced to the immediately lower level of the scale,
reducing the amount of used bandwidth or demanding less
power from the end hosts.
The third stage is entered when the lowest QoS level was
reached and still another reduction is necessary. This
means that the system cannot even sustain the lowest level
defined. In this situation the application is informed and
decides what to do.
Figure 3 divides the filtered loss values in zones. The
Working Zone is the zone of values considered to be
normal and so no QoS action is performed. The Transient
Problem Zone is when a first stage action is taken. The
Degradation Zone is when a second stage correction is
performed. The Improvement Zone corresponds to the
opposite action of the Degradation Zone: to improve the
QoS by one level, performed in the second stage.

Figure 3. Filtered loss zones.

It is important to refer that the processes of increasing and
decreasing the QoS are not symmetrical: a degradation is
performed when a problem truly exists; an improvement is
performed when it is acceptable to think that there are
conditions to do it. It would be difficult to measure if there
was really network bandwidth and CPU power to do the
improvement because it would need another algorithm
and conditions might have changed just afterwards. So,
when the losses are "very low" the QoS is increased just to
see if a better quality can be obtained. If not an oscillation
in the QoS exists but the filtered losses prevent the
algorithm from oscillating too much. Anyway, when some
oscillations existed, we did not found it to be very
disturbing to the user.
The values of λi, λt and λs are obtained experimentally,
and are media dependent.

5. Exper iments

Our experiments were made using a videoconference
prototype on two SUN Sparc 10 workstations with

Parallax JPEG video boards connected by an ATM LAN
(a single Fore switch).
In the traffic figures of this section the solid lines
represent the filtered losses; the point based lines
represent the losses; and the trace based lines represent
the bandwidth being used by the stream. The two
horizontal lines are λi (down) and λs (up). We used the
values 5% and 15% obtained experimentally for these
parameters.
The first experiment (5.1) shows two similar sessions with
and without the algorithm. The second experiment (5.2)
shows the importance of the inclusion of the end host
situation in the algorithm. The third (5.3) measures some
response times of the algorithm.

5.1 Exper iment1: Quality compar ison with and without
QoS adaptation

The objective of the first experiment was to prove that the
system offers a higher quality with QoS adaptation than
without it. The experiment consisted of running two
similar sessions – one with the algorithm in place and the
other one with the algorithm disabled. The first
experiment also shows the operation of the system in a
typical scenario. Throughout the experiment, the
bandwidth was artificially reduced and increased again. It
started with no limitations and there was a reduction to
200 Kb/s, then to 100 Kb/s, increasing after that to 200
Kb/s and again to a situation without limitation.
The scale of QoS used by the application in all
experiments is given in figure 4. It is expressed in terms
of the QoS parameters frame rate (F.R.) and JPEG quality
factor (Q).

Figure 4. Scale of QoS (level 1 is the highest quality).

Figure 7 shows the results of the experiment with the
algorithm running. The initial level was level 5. In most
of the experiments it was typical to have some unstable
period at the beginning because the pipeline of the filtered
losses is not full. But right after (t=15s) the losses started
to decrease, they went below λi and the QoS Manager
improved the QoS. Level 1 was reached at about t=45s
and the used bandwidth was high. At t=60s the bandwidth
was reduced to 200 Kb/s. The system was using more
bandwidth, so losses started to happen and the system
moved to level 2 and to level 3. This move was very fast
and it moved again to level 2. It stayed in level 2 until
t=100s. At this moment, the person in front of the camera
moved out to reduce the image complexity. The system
went to level 1 and used less bandwidth than before.
At t=120 the bandwidth was again reduced and the losses
raised quickly. The QoS Manager moved rapidly to level
nine, one level each 5 s (the period used for the RTCP
receiver reports) but the system could not even work with

Level 1 2 3 4 5 6 7 8 9
F.R. 25 22 19 25 22 19 25 22 19
Q 50 50 50 75 75 75 100 100 100

Improvement
Zone

Working
Zone

Transient
Problem Zone

Degradation
Zone

λi λs 100%λt

percentual losses (%)

this level so the losses never got to a stable value. The
third stage of the algorithm would have been performed at
this stage. This stage was not implemented so the QoS
Manager had to stay in this QoS level despite the losses.
During this period the system acted as if the algorithm did
not exist.
When the bandwidth was again increased (t=180s) the
system took some time to react (the effect of the filtered
losses). Losses diminished and when they went below the
threshold value the QoS Manager started to improve the
quality. When the limitations on the bandwidth ceased to
exist the improvement process went on, and the used
bandwidth increased as well.
It is interesting to compare the curve of the absolute losses
with the curve of filtered losses. They are very similar,
although with a certain delay, but the absolute losses curve
never increases too much.
Figure 8 shows the operation of the system without the
algorithm working. As a first observation the absolute
losses curve shows a more erratic behaviour denoting a
worst situation for the presentation of the video (the
algorithm was just calculating the filtered losses but did
not react). The same reductions and increases on the
bandwidth were performed. A careful analysis can show
that when there were no bandwidth limitations the system
did not use as much bandwidth as in the previous case.
The reason is that the sender stayed at level 5 (the initial
level) not profiting from the better conditions of the
system. When the first reduction took place losses
increased very much and the sender was not able to
decrease its pace. The situation recovered a little bit when
the image complexity decreased. The phase with the
lowest network bandwidth is similar to the one of the first
experiment, and the rest of the experiment is obvious.
A subjective analysis of both situations was made by a
user watching the video presentation. The quality in the
first case was much better. In the second situation there
were many images lost, provoking the freezing of the
screen with the consequent disturbing effect. There were
two causes for this inferior quality. The first was the
presentation of less frames, as it will be shown next. The
second is harder to measure quantitatively and is the non
uniform distribution of the lost frames (not presented). In
fact, when there is no adaptation the following example
situation can happen: a sequence of 6 frames is fully
presented but none of the following 4 will be. When the
algorithm is working there is a smoothing effect: the
algorithm reduces the frame rate and there is a stable
presentation of frames (for instance, every 2 out of 3
frames).
An objective analysis of the lost frames can be made
comparing some zones in the two previous figures. Notice
for example that between t=75s and t=100s we had almost
the best quality in the first experiment with low losses,
whereas in the second there were more losses (around 10
to 15% of the frames). Another great difference can be
noticed after the great reduction of bandwidth in the
middle of the figures. In the first experiment, after t=220s

the best quality with low losses was reached while in the
second experiment losses decreased quicker but they
remained between 10% and 15% throughout the
experiment.

5.2 Exper iment 2: Compar ison of the QoS with and
without consider ing the end host situation

The objective of the second experiment was to analyze the
relevance of the inclusion of the end hosts situation in the
algorithm. Again, two similar tests were made. In the first
the full algorithm was working (figure 5) whereas in the
second only the network related information of the
receiver reports was used to calculate the filtered losses
(figure 6). The system was tested with a faster host
sending information to a slower one and with the network
bandwidth being reduced and increased as in 5.1.
Figures 5 and 6 show the frames not shown in each time
interval. The first interval is when there was no limitation
to the available bandwidth, in the second the bandwidth
had a limit of 200 Kb/s, the third had 100 Kb/s, the fourth
had again 200 Kb/s and finally the fifth had no limitation.
When the full algorithm was running, frames were not
displayed due to two reasons: losses and the algorithm
decision to reduce the number of frames. The two
components can be seen in figure 5. We sum these two
values in order to compare both situations.

Figure 5. Experiment 2: Frames not shown with the full
algorithm working.

Figure 6. Experiment 2: Frames not shown without the
end hosts part of the algorithm.

0
100
200
300
400
500
600
700
800
900

0-60 60-120 120-180 180-240 240-300

Periods

F
ra

m
es

 N
o

t
S

h
o

w
ed

Frames Not Shown (With QoS Algorithm)

0
100
200
300
400
500
600
700
800

0-60 60-120 120-180 180-240 240-300

T
o

ta
l o

f
F

ra
m

es
 N

o
t

S
h

o
w

n

Frames not shown due to the QoS algorithm
Frames not shown due to losses

In fact, the number of frames not displayed in the situation
with the full algorithm is much lower. As the frame rate
values in all levels of the scale is almost similar, the
number of frames presented with the full algorithm is
much higher and so is the QoS.

The subjective analysis also proved the quality in the first
case to be much better and less disturbing. This permits us
to conclude the importance of the inclusion of the end
hosts in the algorithm.

Figure 7. Experiment 1. Normal operation of the algorithm.

Figure 8. Experiment 1. Operation without QoS adaptation.

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

Time(s)

L
o

ss
es

 (
%

)

0

50

100

150

200

250

300

350

400

450

500

 B
an

d
w

id
th

 (
K

b
/s

)

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

Time (s)

L
o

ss
es

 (%
)

0

50

100

150

200

250

300

350

400

450

500

B
an

d
w

id
th

 (K
b

/s
)

5.3 Exper iment 3: Algor ithm reaction times

The third experiment consisted on measuring the
algorithm reaction times to a bandwidth reduction or
increase, i.e., the time it takes to change of QoS level
when a problem occurs.
The relevant values to analyze are: (1) the round-trip
delay between the two end hosts; (2) the time between
RTCP receiver reports; and (3) the number of receiver
reports used to obtain the filtered losses.
The round-trip delay has no significance in our system
because the network has only one switch and it is very
fast. The minimum interval between RTCP repo
rts was 3 seconds and the formula from the standard was
used to prevent peaks of reports. The measured average
between reports was, in practice 5 seconds (the RTP
standard defines this interval to be 5 seconds which means
a bigger value after the formula is applied, but we have
found the system too slow and reduced it). The filtered
losses value was calculated with three reports (around 15s
to obtain these 3 values). Even if the network was bigger
with a longer transit delay, the effect of the other two
values are decisive to the reaction time of the control loop
(notice that for video-conference an usually accepted
maximum value for the round-trip delay is 0.3 s).
Figures 9 and 10 show the distribution of the reaction
times. More than 50% of the reactions took place in the
first 10 seconds. Almost all took place before 20 seconds.

Figure 9. Experiment 3: Reaction time of the system to
bandwidth reductions.

Figure 10. Experiment 3: Reaction time of the algorithm
to bandwidth increases.

This was expected if we take into account the interval
between RTCP receiver reports and the number of these
packets to obtain the filtered losses average.
Shorter reactions can be obtained if the report intervals
will be shortened. However, this increases the amount of
bandwidth devoted to control aspects of the session.
One factor that must be considered and could not be tested
is how a real ATM network behaves in regard to traffic
that overpasses the contracts. There are no general
statements about this because it is related with the traffic
load at any moment. Nevertheless, we assumed that the
process is relatively slow.

6. Related Work

Some similar work on QoS adaptation algorithms have
been done already. [4] presents a QoS adaptation
algorithm also based on RTP. However, the end host
conditions are not considered; the algorithm works only
with the packets lost value given by RTCP reports. [17]
presents a very similar algorithm but also considers some
problems related to multicast.
[5] presents a transport protocol for continuous media
based on a similar algorithm. The algorithm, as ours, is
not part of the application. They do not use RTCP for
monitoring and the protocol proposed is part of a "Quality
of Service Architecture" (QOS-A) [6].
Another adaptation scheme to control network congestion
is presented in [18]. It is based in bit rate and packet rate
scaling, i.e., they do not consider discrete QoS levels as in
our QoS scale.
In [8] we proposed algorithms for intramedia and
intermedia synchronization. We also proposed a QoS
adaptation algorithm similar to the one presented here but
simpler and without the framework. Our present objective
is not just to solve the QoS problems but to simplify the
programmer’s job in creating multimedia applications.
The framework also enables the application to take the
most appropriate decisions making the algorithm generic
to every type of media.
ISO proposed a generic framework [10] in order to
provide a basis for the development and enhancement of
standards that specify QoS mechanisms or mention QoS
requirements. It proposes a common terminology to be
used by these standards. In some sense our work is an
implementation of some of the concepts presented in this
document.
A conferencing application based in RTP is presented in
[12]. Our proof-of-concept videoconference is similar to
theirs, although much simpler. They present many generic
interesting issues related to the work presented here: RTP,
video compression formats, ALF and ILP [7]; and also IP
multicast.
A question that we did not studied but that is related to
QoS adaptation is receiver-dependent QoS for multicast.
This question is studied in [9]. The solution proposed is
based on filters. "Quality Query by Example" can be
implemented over our API but other solutions can be used

Bandwidth Reductions Reaction Time

0

2

4

6

8

10

0/9 10/19 20/29 30/39 40/49 50/59 60+

Reaction Times (s)

Bandwidth Increase Reaction Times

0

2

4

6

8

10

0/9 10/19 20/29 30/39 40/49 50/59 60+

Reaction Times (s)

as well.
Another side question is the maximization of quality when
MPEG is the compression format for video. This issue is
analyzed in [11] and [14]. The idea it to schedule the
stream in such a way that less priority frames (B and P)
are the first candidates when the network has to discard
information.
[19] is a survey about QoS in distributed multimedia
systems. It lists several questions related to QoS and
approaches to solve them. It refers the necessity of hiding
the internal system QoS parameters from the user. They
mention "Quality Query by Example" as a solution to that
problem. We also felt that necessity but used a more
powerful solution that can be managed by the programmer
at his will. The user meaningful concepts are then
translated to system level ones.
Another type of translation between QoS parameters of
different levels is shown in [13]. The paper presents a
"QoS Broker" that negotiates QoS values between the
application and the different system components.
However, most of the parameters are related with real-
time operating systems aspects which make the solution
not so general.

7. Conclusions

This paper presents a framework for the programming of
distributed continuous media applications like
videoconference, video-on-demand or tele-presence.
The framework has two main components that handle
most of the issues related to the continuous media
processing: The Media Device Managers handle the
media capture, communication and presentation for the
application, and are media specific. The QoS Manager
controls the QoS of the media streams, in a uniform and
media independent way.
The framework adapts the QoS of the media to the
network congestion level and end hosts load, under a
higher or lower supervision by the application. This
adaptation is made by an algorithm proposed in the paper,
but others could be devised. The particular case of the
proposed algorithm is not new in the literature. Our
contribution is the inclusion of the end hosts load that we
found in practice to be relevant. In fact, when using an
ATM LAN it proved to be the real restriction to the media
quality, not the network bandwidth. Another contribution
is a mechanism to inform the QoS Manager of the various
working levels the application is interested on having.
The complete framework provides a suitable solution for
the new generation of applications that have to control the
semantics of their data externally to the network. As the
experiments showed, a uncontrolled situation produces an
erratic behaviour that misuses the network and is more
disturbing to the users.
The concrete value of the intervals for the reports, and the
number of reports needed to produce the average can
influence the performance of the closed control loop. We
found that the standard value proposed in the RTP

standard, and an average of the last three reports lead to a
satisfactory system.

8. Bibliography

[1] Antunes N., Rocha R., Pinto P., “Analysis and
Simulation of a Traffic Management Control Scheme for
ATM Switches with Loose Commitments” , Int. Conf. On
Networks and Distributed Systems Modeling and
Simulation, Phoenix, 1997,
ftp://mariel.inesc.pt/pub/papers/cndsmsc97.ps.gz

[2] Bom J., Marques P., Correia M., Pinto P., "An
Architecture for Dynamic Multimedia QoS Control", 7th
IFIP/ICCC Conf. on Information Networks and Data
Communications, Aveiro, June 1998

[3] Bom J., Marques P., Correia M., Pinto P., "Integrated
Dynamic QoS Control for Multimedia Applications", Int'l
Symposium SYBEN 98 Broadband European Networks,
Zürich, May 1998

[4] Busse I., Deffner B., Schulzrinne H., “Dynamic QoS
Control of Multimedia Applications based on RTP” ,
Computer Communications, Vol. 19, Number 1, Jan. 96

[5] Campbell A., Coulson G., “A QoS Adaptive Transport
System: Design, Implementation and Experience” , ACM
Multimediá 96, Boston, 1996, 117-127

[6] Campbell A., Coulson G., Hutchison D., “A Quality
of Service Architecture” , ACM SIGCOMM 94, Computer
Communication Review, Vol.24, April 1994, 6-27

[7] Clark D., Tennenhouse D., “Architectural
Considerations for a New Generation of Protocols” , ACM
SIGCOMM 90, Philadelphia, 1990, 200-208

[8] Correia M., Pinto P., “Low-Level Multimedia
Synchronization Algorithms on Broadband Networks” ,
ACM Multimediá 95, San Francisco, 1995, 423-434,
ftp://mariel.inesc.pt/pub/papers/mm95.ps.gz

[9] Garcia F., Hutchison D., Mauthe A., Yeadon N., “QoS
Support for Distributed Multimedia Applications” ,
Proceed Int. Conf. in Distributed Processing (ICDṔ 96),
Dresden, 1996

[10] ISO/IEC JTC1/SC21, “ Information Technology –
Quality of Service Framework – Final CD” , July 1995

[11] Kalkbrenner G. et al., "Quality of Service (QOS) in
Distributed Hypermedia Systems", Proc. 2nd Int´l
Workshop on Principles of Document Processing, 1994.

[12] McCanne S., Jacobson V., “vic: A flexible framework
for packet video“, ACM Multimedia'95, S. Francisco,
1995

[13] Nahrstedt K., Smith J., "The QoS Broker", IEEE
Multimedia, Spring 1995

[14] Riley M., Richardson E., “Minimizing the Effect of
Cell Losses on MPEG Video” , BRIŚ 94, Hamburg, 1994,
491-494

[15] Schulzrinne H., “RTP Profile for Audio and Video
Conferences with Minimal Control“ , (RFC 1890) January
1996

[16] Schulzrinne H., Casner S., Frederick R., Jacobson V.,
“RTP: A Transport Protocol for Real-Time Applications” ,

(RFC 1889) January 1996

[17] Sisalem D., “End-To-End Quality of Service Control
Using Adaptive Applications“, IFIP 5th Inter. Workshop
on QoS, New York, May 1997

[18] Talley L., Jeffay K., "Two-Dimensional Scaling
Techniques for Adaptive, Rate-Based Transmission
Control of Live Audio and Video Streams", ACM
Multimediá 94, S. Francisco, 1994

[19] Vogel A., Kerhervé B., Bochmann G., Gecsei J.,
“Distributed Multimedia and QoS: A Survey” , IEEE
Multimedia, Vol.2, Numb2, 1995

