
Distributed Objects: an approach to sharing multimedia information 1

Distributed Objects: an approach to sharing multimedia information

Paulo Pinto and Luis Bernardo
Inesc/IST, R. Alves Redol, 9 P-1000 Lisboa Portugal

{pfp,lflb}@inesc.pt

Abstract: This paper addresses the issue of multimedia cooperative work. An ODP
based view of the system is discussed taking into account some of the viewpoints
of the standard. Special emphasis is given to the modeling of multimedia stream
interfaces and the concept of binding object which is a key concept. The paper
describes a multimedia distributed platform, DIMPLE, supporting interactive and
distributed multimedia applications. The example application implemented allows
for a shared synchronized access to multimedia information systems and includes
an off-the-shelf videoconferencing system which is a non-ODP product. It is shown
that the concept of binding object makes the integration very easy.

1. Introduction

Handling multimedia data on networked and distributed systems begins to be a known issue
with a clear identification of the problems still open. Most of the work is centered on
videoconferencing systems ([1], [15], or commercial products such as ShowMe and
Communique) and high-level synchronization and presentation aspects on information retrieval
([8], [10], [16], [12]). Major problems still open are: low-level synchronization of real-time data
when using asynchronous networks [2],[14]; definition of relevant quality of service properties
for the multimedia case; and appropriate application concepts to model multimedia.

Another area of interest to this paper is cooperative work (CSCW). Cooperative work is
achieved either by using shared aware applications [15], or shared unaware ones making use of
certain transparencies given by utilities such as SharedX. Systems are, such as Berkom or
ShowMe, which use a videoconferencing system and a shared working space based on
SharedX. The limitation of the SharedX approach is that it works at rendering level, making it
unsuitable to be used by multimedia streams.

This paper describes a framework using the ODP concepts [9] for sharing multimedia
information, based on distributed objects. If the concept of a user in the system is not well
chosen, it will create unnecessary complexity both at communication and control levels each
time a user wants to join or leave the system.

A typical application might be a shared multimedia retrieval system in which users can see the
same information at the same time and browse as if only one user was in the system.
Furthermore, users can join the session (and leave) when they please getting the current state as
everybody else in the system at that time. A useful purpose might be applications in which
tutors supervise the learning process. For instance, the replacement of a broken piece on an
industrial machine. The maintenance person would learn from a multimedia document. If (s)he
has some doubts (s)he could invite the support responsible person from the manufacturer to the
session. The support person would follow the session; explain further details using the
videoconferencing; or influence some browsing decisions. The support person would join
exactly at the place where the problem was and could leave anytime after that (joining again,
etc.).

Distributed Objects: an approach to sharing multimedia information 2

The system was implemented using the version 4.1 of ANSAware [3] with some system add-
ons to implement the engineering objects required. The videoconferencing tool used was the
Berkom system that provided an example of connection with the non-ODP world (Berkom uses
the OSI stack of protocols for control and UDP protocols for real-time data transport).

This paper starts with a brief description of the general structure of the distributed multimedia
platform, called DIMPLE, used to construct applications. Only the necessary information to
understand the rest of the paper is given and further details can be seen in [12] [13]. Section 3
describes how the computational concepts of ODP were used to fit the platforms ́requirements.
The following section describes the engineering objects necessary to implement the
computational ones, and the choice of protocols is the subject of section 5. Section 6 shows
how a non-ODP system was nicely integrated as long as only communication is concerned.
Section 7 describes an application for the scenario defined above, and the final section draws
some conclusions and points some issues not yet fully defined which were left for further study.

2. General Description of the DIMPLE Platform

Multimedia applications can be created on the DIMPLE platform by defining control
interactions between objects. Objects are distributed entities that manage entirely one medium,
or several media in a bunch, and offer a unique point for control (They are called MMobjects).
MMobjects rely on component objects to provide the functions of sources, sinks and filters (see
figure 1). Control interactions are made of events and actions between objects, and their

description is suitable to be
written using a process algebras´
based language. Actions are
simply submissions of
invocations and all the returning
values came as events. Texts,
movies, pictures are modeled as
processes that start and end, and
can be composed with each
other using the language
operators. All important control
information in objects is seen at
platform level by events and
actions. MMobjects show
interest on events implicitly
from the behaviour expressions
in the language. There are two

major classes of events: those related to the multimedia data called deterministic events (object
started, ended, a video frame was played); and those related to any other feature in the system
called non-deterministic events (user intervention, change of QoS of the object, change of
volume or speed, etc.).

DIMPLE was conceived to deal with multimedia and entities differ very much depending on
their nature (e.g. audio has volume, video has geometry and colour, etc.). One approach to
handle all aspects is the usage of operation overloading. However, this can be unnatural to
programmers and application writers so groups of actions were joined together with their
respective events and state data to form statuses. An MMobject is thus a collection of status
relevant to the type of the multimedia data it controls. In terms of type systems (or type names

Fig 1 - MMobject interaction

sink source

manager

sink

manager

control

source

MMobject

MMobject

Distributed Objects: an approach to sharing multimedia information 3

with compatibility relations) there are several: events; annotations (which are a special kind of
events); MMobjects; components; statuses; actions; and multimedia data connection points.

The inclusion of new types of data, or the upgrade of existing ones while the system is running
was seen as an important issue due to the field of application. It can also happen that new
applications (the interaction description) would use old objects or the way around. This was
achieved by an incremental type system [13] where type information is checked at run-time.
Type safety exists because when objects support more operations than the application knows of
these operations will not be called. On the other hand, new applications could try to submit an
invocation on new operations not yet supported by old objects. This attempt is trapped by the
platform because operation type checks are performed at run-time using type information from
a Type Repository. It will fail but applications have to recover and simply do not interact in
that way (action invocation can be triggered by the behaviour expressions of the language and
not only from the compiled code). This latter feature is sustainable when new operations refer
to non-basic synchronization issues (such as increasing the volume, or the speed of
presentation). If operations fail the application will have a different behaviour because the
objects used belong to older versions. When synchronization related actions have to be
introduced, then a major version of the platform has to be created.

All the basic synchronization actions are present in all MMobjects and constitute the status
Life and Context. Status Life has actions to Prepare and Dismiss objects; status Context has
the actions Play, Stop, Destroy, Inform (of references to other statuses of the objects),
RegisterStatusInterest and UnregisterStatusInterest on events of a certain status, and
ReceiveEvent as a general dispatcher for events. Component objects also have a Life status
(LifeComp) and a Context status. All other statuses are optional on MMobjects. The type of
MMobjects reflects the components gathered to make it and the group of statuses it provides.
The actions of the statuses can be implemented directly by the MMobject manager or delegated
on the components of the object. For the clients this is transparent because all they get is a
reference for the status operation interface.

3. Computational Description

One of the objectives of this paper was to test how suitable were the ODP concepts of the
computational viewpoint to model multimedia applications. Therefore, the focus of this section
will be mainly on this point. MMobjects on the platform consist of basic computational objects
(BCO) and binding objects (BO). Basic computational objects model the interactions between
MMobjects (and between the MMobject manager and the components) for the aspects of event
handling and action invocation. Interrogations were used for both interactions although the
objects simply collect terminations (a reliable mechanism for announcements would be
enough). So, at the highest level of refinement an MMobject is a BCO. One level down, the
MMobject manager and the components are themselves BCOs. Among other interactions they
divide, cooperatively or not, the statuses offered by the MMobject.

The concept of binding object was used to model the multimedia connections between
components. The binding object has an operation interface for control -- the port interface.
Actually port is just as any other status, so there is the same computational concept for the
language and execution -- e.g. objects get to know the reference to it using the parameter
passing on operations. The control interface is important because it supports the explicit
binding and the dynamic association (and separation) of connections over time. The BO also
has stream interfaces for data. Figure 2 shows the components of the binding object with some
insight already into the engineering concepts explained below. The external control is the port

Distributed Objects: an approach to sharing multimedia information 4

interface with a specialization for internal control. The role interface is an engineering concept
to model the local interface between the object and the channel.

A binding object is a distributed entity which controls communication between BCOs and has
other control features related with the specific type of communication. These two issues will be
described now.

With respect to the first issue, communication, explicit binding was used. BCOs get to know
the interfaces' references of the objects they
want connected. In other words, the
MMobject manager gets the port control
interfaces of its components and instructs
the binding object manager. Thus, this
stream binding is an operation performed by
a third-party object. Polymorphism was used
to define different types of stream interfaces.
They all descend from port which has the
Connect and Disconnect operations.
Subtypes have low-level connect operations
due to a reason explained below. The type
space reflects three main issues: the
communication protocol (TCP, UDP, XTP,
etc.); the data encoding format; and the specific transfer protocol used (to maintain real-time, if
the sink is pushing or pulling data, etc.). The compliance to just operation signature was seen
as a weak verification here.

Once the basic computational object gets the references for the connections it calls the Connect
interface of the binding object. This call triggers, at engineering level, the low-level connect
between the different objects that compose the BO to establish a stream interface. Unlike
operation interfaces, stream interfaces use the connection-oriented paradigm, so explicit
communication has to be performed to create resources. Operation interface bindings are
simpler because servers are always ready to engage on invocation deliveries and do not need an
explicit connection. Implicit binding could also have been used, and the first data would start
the connection. This was not considered appropriate because it would put an additional delay
on the first data, and resources could not be available at the time the data begins to be
transferred.

A more detailed description of the binding sequence is useful at this point. The BCO MMobject
manager invokes the Prepare action on each component. It gets to know the components by its
own Prepare operation. The parameters for its Prepare are defined in the language. The
language has two different parts (see figure 3): an ADT part defining the MMobjects, their
properties (geometry, data files, etc.), their components, and their topologies; and a behaviour
expression part which is the dynamic behaviour of the application (deterministic and not).

Fig. 2 - Binding object

Binding object

roles

external control

roles
internal control

flow

stream stream

Distributed Objects: an approach to sharing multimedia information 5

Shared applications can create new connections dynamically to existing MMobjects.
Topologies can fall into three different sets to model applications so different as
videoconferencing, information retrieval, or mixing information: (a) new connections involve
the creation of both sources and sinks; (b) just another sink connected to the same source; or
(c) just another source connected to the same sink. This information is expressed on the
replication parameter of sources (and sinks).
• Source Type Name means that a new connection uses the same source (e.g. a
 video source on a video on-demand application).
• Source Type Name [] means that a new connection will produce another source
 (e.g. a camera on a videoconferencing system)
• Sink Type Name [] [] means that a new connection will produce a new sink for all

the connections established in the system (e.g. a video window
for a videoconferencing system)

When an MMobject controls a multimedia data type (e.g. a video with stereo audio) the LINK
command has the possibility to connect ports individually. For instance, connect the video, and
connect the left audio channel to the mono incoming audio channel of the sink. Further
considerations on this subject are out of the scope of this paper.

Fig. 3 - Language structure and MMobject declaration structure

 Specification Spec_name [event_list] (parameter_list) :
functionality

MMobject definition

behaviour
deterministic behaviour expression
AND

non-determ. behaviour expr.
OR

non-determ. behaviour expr.
 endspec

 MMobject Type Name
[WITH

property_name property_value
...
property_name property_value

];

Source Type Name Replication
[WITH prop_list];

Source ...

Sink Type Name Replication
[WITH prop_list];

Sink...

Link Source Sink

Distributed Objects: an approach to sharing multimedia information 6

After the Prepare is returned (Prepare is the only action which has returning parameters) it
contains reference information about the stream control interface (port) created by the BCO
component via a control role to the binding object. This information is transferred within the
Connect operation between the MMobject manager and the binding object manager. It will be
used at engineering level to start the real connections to the different endpoints using the low-
level connect (when it exists). The stream interface has a different reference identifier because
ANSAware 4.1 does not support this interface and the effort to create a similar reference
identifier was not considered relevant at this point. Nevertheless, this is not so important at
conceptual level. Figure 4 shows the steps of the explicit binding (the Connect operation is

invoked on the BO manager).

There are also control features related with the specific type of communication. An important
one is the quality of service for the connection but it was not properly addressed in this version
of the platform. BCOs can only set the size of packets and whether or not traffic shaping will
be performed. Other parameters are hard-coded in the BO. Another control feature is the
control of the floor when multipoint connections are managed. High-level policies are
transferred using the control roles (only one gets the channel, volume is changed accordingly,
etc.) and the BOs perform the respective algorithms.

4. Engineering Description

Basic computational objects and binding objects are supported by basic engineering objects and
associated engineering concepts (stubs, channels, etc.). The operation interface part and the
behaviour associated to the BCO use the ANSAware transparencies and functions, similar to
the ODP standard. The novel part is the multimedia handling and it will be the focus of this
section. The control part of the binding objects implementing streams is also straightforward
because they use operation interfaces. The stream interface has the following correspondence at
the engineering viewpoint.

A channel is created for the (possibly multipoint) stream connection inside the MMobject. The
low-level connect operation (referred above for completeness of the description) is, in fact, an
exchange of engineering interface references inside the channel. Each end point has a stub,
which is specific to the interface type of the basic engineering object. Stubs perform little work
because most of the multimedia data is handled by hardware devices controlled directly by the

Fig. 4 - Computational steps for the explicit binding

MMobject manager

BO

BCO

Component

port

Context

Prepare

Connect

1

2
4

BO

BCO

Component

port

Context

1

2

stream stream

3 3

Distributed Objects: an approach to sharing multimedia information 7

basic computational object. The work consists of the identification of headers and in-band
control information. The binder has a major role than stubs because it controls the multipoint
connection. It implements the connection as a set of one to one connections in this version. The
current implementation of groups in ANSAware was not seen appropriated to handle
multimedia data due to great overheads. Implementing the binder with the awareness of 1:1
connections makes it ready to use multicast features of the ATM networks in the future
(stronger arguments can be seen in the following section). Control information local to the node
is added to the incoming stream regarding the control algorithms of the computational binding
object described above (gain indications for the volume, etc.). The binder can also participate
in the application if certain statuses related to its tasks are being considered (e.g. QoS). Finally,
protocol objects are very lightweight because of the nature of the data. Different protocols are
used to provide different quality of service assurances to the basic engineering objects.

Before establishing endpoints (when Prepare was called) a type compatibility check of the
stream interface is performed. This check has two steps: the first is a protocol check and exists
because stream references are not complete; the second refers to the encoding and high-level
transport of data and is checked at run-time with the cooperation of the Type Repository.

The BCOs map onto basic engineering objects. They cooperate inside the MMobject to
accomplish the actions offered to the exterior. They are also responsible to identify, process,
and send events of interest to the application in general (other objects or application
controllers). The two classes of events have different treatments. Deterministic event
information is mixed with the raw data and sinks and sources deal with the event (depending on
the type of the data, events, etc.). Note that there is no reason why stubs (or binders) could not
interpret this kind of control information, except that the concept of what a binding object
really is in the computational viewpoint would be more diffuse. Non-deterministic events are
handled by sinks or sources and can come from the binder (decrease of QoS); from the user
(clicks on windows); from the geometry manager; etc.

With respect to multimedia data and streams, sinks just pass the data from the stubs to the
hardware devices (or another corresponding entity). Sources get the data from the producer
(disk, microphone, camera, etc.) and feed the stub (actually the real-time preserving algorithms
of the channel take initiative on the sampling instants making up-calls to the basic engineering
object to transfer, or ignore, data).

5. Technological Description

The non multimedia part of the system uses the ANSAware 4.1. The stream interface was
added to this package and consists of:
• Protocol objects are simply a direct use of UDP and TCP sockets in this version. A

lightweight connection-oriented transport protocol, such as XTP, was felt to be missing.
UDP takes a reasonable long time to process address information per datagram, and it is not
possible to deactivate the flow control features of TCP. Direct use of the AAL5 interface to
the ATM network would solve the problem. But it would also prevent this platform from
running over different networks unless a major engineering work was performed to make the
choice of a common protocol automatic.

• The binder manages a binding endpoint structure with all the connections to the other
components. New link points are added each time there is a Connect and a low-level
connect between binders. Multimedia data is sent once by the basic engineering object and
transmitted to each endpoint. The binder relies on the protocol object to provide the
necessary quality of service for the engineering object. Audio and video, for instance, use
UDP transport without any error control. Some control information is provided for the

Distributed Objects: an approach to sharing multimedia information 8

identification of the basic structures, such as a video frame. The binder accepts any frame
as valid if the error rate (missing parts) is less than a threshold percentage. There is a
mechanism for real-time rate control with awareness of missed deadlines which work with
basic engineering object using up-calls.

• The stub performs unmarshalling of parameters avoiding memory copies as long as
possible. Data is then copied into the hardware devices for decoding and presentation (a
dual task is performed by client stubs).

It is important to refer that is this prototype the stream interface runs in ANSAware kernel
mode (i.e. without any task context) to improve efficiency. Each time a deterministic
interaction is necessary, the task context is searched before any operation interaction takes
place. This creates a potentially unsafe part in the system at the expense of not creating
efficient kernel structures to handle the stream interface. The problem is easily solved by
integrating the binding endpoint structure within the kernel and schedule the stream activities
before any other task. Once more, such modifications to the ANSAware were not considered
relevant at this stage.

Basic engineering objects interact with each other using the ANSAware transparencies and
functions to execute the dynamic behaviour of the application. The property feature of the
Trader was used intensively to support the platform´s type system. Each time a new video,
audio, text, etc. is created new instances of the objects are launched to handle it.

6. Using non-ODP systems

The application described in the Introduction (joint-synchronized access to an information
system with videoconferencing) was implemented and it is the subject of the following section.

The videoconferencing application is the Berkom system and uses the XVideo board from
Parallax for video and the workstation´s audio device. Both Berkom and the multimedia
platform can coexist competing for the XVideo resource. Unfortunately, this is not true for the
audio device. One system would have to integrate the other.

The audio type has the particularity that it is only the source which interacts at control level.
Sinks simply present data. Therefore, the use of Berkom is just a communication issue because
the dynamic behaviour of the application is not influenced. From the computational viewpoint a
binding object would solve the problem...

The solution found was the definition of a special binding object (the ODP <x>interceptor was
interpreted as an object to connect different ODP domains. The problem here was to access a
non-ODP system). The new binding object still has the compliance to the port interface. Thus,
at computational level nothing is changed except that a new MMobject must be used (one that
uses the special binding object).

The subtyping of port is already an engineering viewpoint issue. The new subtype, called
mmcport, has not any low-level connect operation defined and provides only a type definition.
The Berkom system is accessed when the control role of the binding object is signaled by the
basic engineering object (step 2 of figure 4). The Connect operation adds new destinations to
the multipoint connection. This is performed by the Berkom system instead of calling the low-
level connect as for the other binding objects described before.

There are still two aspects to be taken into consideration:

Distributed Objects: an approach to sharing multimedia information 9

• differences on how to address endpoints (ODP references on DIMPLE versus machine
names on Berkom);
Engineering interface references for port interfaces are obtained by parameter passing, so
the parameters actually exchanged were replaced. A selector decides if the reference is an
ODP reference or any other alien engineering reference supported by DIMPLE. For the
Berkom case the alien reference includes the name of the machine to connect to and the
Berkom type for the data. The mmcport Connect operation maps directly into the
appropriate data type of Berkom. Fig 5 shows the various standards involved when audio is
played from the platform using Berkom.

• the acquaintance of the addresses (previously there was the Prepare operation on the BCOs
and the addresses of the BCOs were obtained from the Trader).
The Trader cannot provide interface references for the Berkom system, so the solution
adopted was to get the address information from the application itself when a new
connection for an MMobject is requested.

7. Example

The example application consists of a multimedia retrieval system with multimedia documents
stored in a distributed way. The behaviour of the document is the real application on DIMPLE.
MMobjects handle each type of data (video, audio, text, etc.) so the user can see the document
at the sinks and interact with it (there are button objects and sinks are sensitive to mouse
clicks). The specification states how MMobjects evolve to create the document and how and
when users can interact. This application can be shared by simply connecting another set of
sinks (representing a new user) to the active MMobjects. New users just get the current
information existing users are watching. In control terms, the application is not aware that
another user was added because the distributed MMobjects hide that fact. The binder controls
the synchronization between user interventions internally. The videoconferencing system is the
Berkom system, as already mentioned. It runs independently from the DIMPLE application but
has to be running if it is going to be used during the session because of the audio device access.
A more detailed description of this application can be seen in [5].

The specification is interpreted by a unique object in the system. Events are reported to it and
actions are triggered from it. Decentralized control could also have been implemented and each
MMobject manager would have an interpreter in it. This was done for other applications [4]. In
order to keep track of who is in the system at every moment an object called UGM (User

Fig 5 - Engineering and Technological view of the connection DIMPLE - Berkom

Other DIMPLE objects

DATA -- UDP/IP

Control -- ISO

REX/
MPS

Source

Special Binding Object

Sink

Distributed Objects: an approach to sharing multimedia information 10

Group Manager) keeps an array of users and an array of active MMobjects. This information
is important because MMobjects have to receive “user connection” orders and the interpreter
should not care about this. User connection orders are gathered in a yet another status, used
exclusively by the UGM. The interpreter, the UGM and all the MMobject managers form a
capsule called sserver (script server).

When a user wants to access the information system, (s)he runs a front-end application, called
smp (shared multimedia presentation), with a name for the session -- let’s assume castles.
smp looks up the interpreter in the Trader, and invokes the Prepare action for an object of type
application which instantiates the castles instance. The Prepare is intercepted by the UGM
and an exclusive Context status interface is given to the smp (see figure 6). Prepare has the
node name of the user’s machine that is used to filter offers in the Trader and to identify
Berkom sinks. The interpreter eventually receives the Prepare invocation deliver and invokes
the Prepare on all MMobjects of the document. Source components are running and sink
components are produced via the factory object. Meanwhile, a window control interface
appears on the user’s screen (see figure 7), giving the user the possibility to play, stop, pause
and quit the application.

When another user
wants to join the
session he must know
the session name. His
smp proceeds exactly
as the first one but
this time UGM traps
the Prepare and does
not let it go to the
Interpreter. Instead, it
invokes the AddUser
operation on the
MMobjects “user
connection” status.
Each MMobject
reacts to this
operation according to
the replication level of
its components,
creating the necessary

sinks and linking to the necessary sources. It also creates another exclusive Context status
interface for this new user and another window control interface is presented.

The existence of different instances of the Context status interface is simply an easy way to
control the smp accesses. The Interpreter receives the deliver of, for instance, the Play
invocation regardless of what smp has submitted it.

When a user quits smp, the Destroy operation on his Context status is invoked. Once more the
UGM intercepts the invocation and if the user is not the last one prevents the call to follow to
the Interpreter. The RemoveUser of the “user connection” status of the MMobjects is invoked
and the connections related to this user are destroyed. When the last user submits a Destroy,
the Interpreter gets it and destroys the application instance.

Fig - 6 - Computational interfaces for the application

sink1

smp

user 1

host C

sink1

smp

user 3

host E

sink1

smp

user 2

host D source1

host B

sserver
host A

Life

Context

Context

Context

Distributed Objects: an approach to sharing multimedia information 11

Figure 7 shows the output of the application with the window control interface, a picture and a
movie. Other users see exactly the same thing.

There are two interesting remarks to make. First, note that the MMobject manager is exactly
the same for any type of object -- it works at status level and is completely parameterized by
the status, property list, component definition, etc. with the run-time help of the Type
Repository. At its level of abstraction there is no difference between a movie, an audio or a
picture MMobject. In fact, the example application has only one manager inside the sserver for
all MMobjects. For the second remark it is necessary to say that any object can send an
Ev_Start event when it starts and can send an Ev_End when it finishes (to any objects that
showed interest). These events are related to the status Context. Note now that the application
is seen by the smp via a Context status. All smps can receive events Ev_Start and Ev_End each
time the Interpreter starts the playing of the object or finishes. This means that an application is
just another MMobject that can be included in any higher-level specification, and so on.

8. Related Work

Several works describe experiences covering certain parts of what was discussed in this paper.
The ones which overlap the most are: [11] where the general concept of a multimedia socket
and plug is defined with a reduced set of actions and some type compatibility rules; [7] contains
the five viewpoint specifications of what a stream binding object should be. However, most of
the functions are actually considered at the level of basic computational object and engineering
objects such as the binder and the stub were omitted. It was seen in DIMPLE how important
their roles are. [7] also uses TCP for data transportation which can prevent any practical
application due to the retransmission algorithm. [6] presents a general taxonomy for the CSCW
in open distributed systems but does not cover continuous media very deeply.

9. Conclusions and Further Work

This paper has shown how an application for multimedia cooperative work can be easily
constructed with the concept of distributed objects and encapsulation of the control of data.
The DIMPLE platform works at control level which is the level required for most of the
general purpose multimedia applications. It is difficult, of course, to express data manipulation
at this level (e.g. particular algorithms for mixing signals) but the simplicity gained in
constructing other types of applications overcome this limitation.

Fig - 7 - An example of a document with a picture and a video about castles

Distributed Objects: an approach to sharing multimedia information 12

A key concept for the distributed objects defined here is the binding object from the RM-ODP,
and specially its relation with the stream interface. This is a subject not fully addressed on the
standard and the experience gained with the work of this paper was elucidating in some
aspects. A first observation is the need for operation interfaces to be able to control the binding
object from other computational objects. However, other operations are needed to fully control
the binding from an engineering viewpoint. Subtyping was chosen here as the solution. As a
second observation, stream interfaces need explicit bindings because of the different nature
towards their operation counterparts. The paper has shown how intuitive it is to drive the
binding from constructs in the language.

At engineering level most of the work of the channel is performed by the binder, and its
interface needs to be carefully defined in order not to restrict any function related with
multimedia data. Stubs only look at control information to introduce as little overhead as
possible.

At technological level it was felt the need for multimedia transport protocols and clever usage
of the transmission medium by the binder. The high-performance connection of the stub to the
hardware devices is also a critical point in the overall efficiency.

The binding object concept models communication in such a good way that it can hide limited
scale interworking with non-ODP systems from the computational viewpoint. Manipulations at
engineering level were sufficient.

Some issues are still open for further research. The binder interface needs a clearer definition
of high-level QoS parameters for the data streams, and the definition of the proper concepts to
exercise control of the binder features. It is also an open question whether the binder could
actively participate on the DIMPLE control narrowing the space for the basic computational
objects in the components.

In terms of protocol objects, a low-level synchronization algorithm to enforce intra-stream
synchronization and inter-stream synchronization between different media in an MMobject is
currently being developed and will be reported in the near future. The current real-time
enforcing algorithm has no control on the continuity of data.

A final point is the definition of a syntax to express complex topologies in the language. Some
limitations were felt with the current syntax specially for odd cases where hardware devices
force a certain configuration (for instance, the XVideo board insists on having a video window
on the source, making the need for a local sink null).

Acknowledgments

The authors wish to acknowledge Companhia Portuguesa Rádio Marconi for the partial
funding of this research. Part of this work was performed under the scope of an EURESCOM
project called EMMA - European Multimedia Experiments in an ATM Environment.

References

[1] M. Altenhofen, J. Dittrich, R. Hammerschmidt, T. Käppner, C. Kruschel, A.
Kückes, T. Steinig, The BERKOM Multimedia Collaboration Service, ACM
Multimedia 93, pp. 457-463.

Distributed Objects: an approach to sharing multimedia information 13

[2] D. P. Anderson and G. Homsy, A Continous Media I/O Server and Its
Synchronization Mechanism, IEEE Computer, Special Issue on Multimedia
Information Systems, 24(10), pp. 51-57, 1991.

[3] ANSAware 4.1, System Programming in ANSAware. Document RM.101.02,
February 1993.

[4] L. Bernardo, Specification and Synchronization of Multimedia Aplications with
Distributed Control, Msc Thesis, Instituto Superior Técnico, Lisboa, Portugal,
June 1994 (in Portuguese).

[5] L. Bernardo, P. Pinto, Sharing Multimedia Information: a basis for assisted remote training,
Proceedings BRIS'95, Dublin, September 1995.

[6] G. Blair and T. Rodden, The Challenges of CSCW for Open Distributed Processing,
International Conference on Open Distributed Processing 1993, pp. 99-112.

[7] V. Gay, P. Leydekkers and R. Veld, Specification of Audio/Video Exchange Based
on the Reference Model of ODP, Proceedings BRIS'94, pp. 179-191.

[8] ISO 10744, Information Technology - Hypermedia Time-based Structuring
Language (HyTime), 1992.

[9] ISO/IEC 10746-3, ITU-T Rec. X.903, Open Distributed Processing Reference Model
- Part 3: Architecture, 1995.

[10] ISO 13522-1, CD. Information Technology - Coded Representation of Multimedia
and Hypermedia Information Objects (MHEG) - Part1: Base Notation (ASN.1), 15
June 1993.

[11] C. Nicolaou, An architecture for real-time multimedia communication system,
IEEE Journal on Selected Areas in Communication, 8(3), pp. 391-400 (1990).

[12] P. F. Pinto, P. F. Linington, A language for the specification of interactive and
distributed multimedia applications, International Conference on Open
Distributed Processing 1993, pp. 217-234.

[13] P. Pinto, L. Bernardo, P. Pereira, A Constructive Type Schema for Distributed Multimedia
Applications, Proceedings BRIS'94, pp. 419-434.

[14] S. Ramanathan and P. Venkat Rangan, Feedback Techniques for Intra-Media
Continuity and Inter-Media Synchronization in Distributed Multimedia Systems,
The Computer Journal, 36(1), pp. 19-31, 1993.

[15] J.Rodríguez, ISABEL: Quick Reference, Dpt. Ingeniería Telemática, E.T.S.I. de
Telecomunicacíon, Univ. Politécnica de Madrid, December 1994.

[16] J. Stefani, L. Hazard, and F. Horn, Computational model for distributed
multimedia applications based on a synchronous programming language.
Computer Communications, 15(2), pp.114-128, March 1992.

