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Abstract: Scalable Internet services are based on sets of peer application servers. A decentralized location service is 
used to resolve human readable application identifiers and return the nearest application server reference. 
This paper evaluates several services and algorithms from the Internet, grid and peer-to-peer community 
services. It identifies two potential problems and proposes a new approach for handling them. Existing 
techniques structure the overlay networks using tree structures. The proposed service enhances the structure 
with meshed structures at each level, creating dynamically multiple paths to enhance scalability. We present 
a study and simulation results on one aspect of scalability – sudden load of requests from users. Our service 
adapts to the load reaching a stable stage and performing resolution requests before a certain time limit.  

1 INTRODUCTION 

The growing number of users, computers, and 
applications servers is rapidly driving Internet to a 
new reality. An Internet application can no longer be 
a single server running on a single node. 
Applications must be supported by peers of 
machines. The convergence of web services and grid 
technology (Foster, 2002) provides a hint for what 
might be the future Internet applications.  

An open architecture for applications must 
necessarily detach the identification of an 
application from the location of the application 
servers, in order to cope with a huge community of 
users and a large dynamic set of servers (peers). 
Such applications must not be identified by an IP 
address has present URLs are. Instead, an 
intermediate identifier must be used to bridge a 
human significant representation to the actual 
servers' location. This introduces the necessity for a 
middleware service that resolves the intermediate 
identifier to an application server reference. 

This paper focuses on the implementation of 
such a location service. The location service must 
adapt to the dynamics of the application server peers 
and provide a scalable service to the applications. 
Section 2 presents an overview of the envisioned 
scenario. On section 3 we review several proposals 
of location-like services from different communities. 
We analyze their ability to handle simultaneous 
peaks of lookups and updates, and the resulting load 
distribution on the network. On section 4 and 5, we 

present our location service proposal. The paper 
describes its architecture and algorithms, in light of 
the same requirements. We show that the 
introduction of a dynamic structure provides a 
significant improvement over other approaches. The 
location service performance is evaluated using a set 
of simulations under loaded conditions on section 6. 

2 PROBLEM DEFINITION 

This paper assumes the existence of an active 
network, with a ubiquitous set of compute nodes, 
where application and middleware servers may run. 
A grid middleware layer enables the dynamic 
deployment of application and service servers on 
demand, and the access to network resources, 
including bandwidth and processing power. Notice 
though, that Internet is not homogeneous. We 
assume that it is composed by several interconnected 
high-bandwidth core networks, which interconnect a 
huge number of high-bandwidth and lower 
bandwidth networks. In order to avoid bottlenecks at 
the core, communication should be localized. 

The location service is one of the key 
components for the future Internet scalability. The 
location service must provide an anycast resolution 
(Partridge, 1993) for the intermediate application 
identifiers. It must return the location of the 
application server nearest to the client. The actual 
metrics changes depending on the location service 
and on the application requirements, but it may 
include hops, bandwidth, stability of the nodes, 
processing power, etc. 



 

The location service creates an overlay network 
on top of the compute nodes, which supports the 
application server lookup operation. The user 
preferred applications evolve in time. For instance, a 
local news service may become a top news 
application due to a notorious event (e.g. a local 
elections tie or an accident), or an e-commerce site 
may jump to the top due to aggressive marketing. A 
huge jump on the preference order may produce a 
huge increment on the number of clients (n2/n1 if 
Zipf distribution (Adamic, 2002) is followed). This 
will lead necessarily to the increase on the number 
of servers to cope with the demand (e.g. Content 
Delivery Network applications (Vakali, 2003) 
distribute replicas of pages to handle load peaks). A 
generic algorithm was proposed in (Bernardo, 1998) 
to control the replica deployment. The location 
service must be able to handle this peak of updates, 
and in parallel, the concurrent peak of lookups. 
Centralized approaches, based on a home location 
server may fail due to a peak of millions of requests. 
Caching solutions may also fail, because they may 
conceal the appearing of new application server 
replicas. 

The envisioned location service provides two 
operations: lookup(id, range) and update(id, 
serv_reference, range). Each application server 
registers on the location service its reference 
associated with a unique application identifier (id) 
for a certain range. Clients search for one or more 
replicas within a range on the network.  

3 LOCATION-LIKE SERVICES 

Several existing services support the location 
service required functionalities. They differ on how 
lookups are performed: either use flooding 
(broadcast when available) or guided search.  

Flooding approaches are common for micro-
location services (e.g. Jini (Gupta, 2002)), for 
unstructured peer-to-peer (P2P) networks (e.g. 
Gnutella), and for routing algorithms in Ad Hoc 
networks (e.g. AODV (Perkins, 2003)). Updates are 
made on a local node, resulting on random 
information distribution. A flooding approach does 
not require (almost) any setting up, and adapts 
particularly well to unstable networks, unstable data 
and unstable nodes. However, it has high search 
costs and does not scale with the increase of the 
number of clients and of the lookup range 
(Schollmeier, 2002). Therefore, it is not adapted to 
provide a global view of a system. Strategies for 
reducing the lookup costs include (Chawathe, 2003): 
the creation of supernodes; the replication of 
information on neighbor nodes; the use of selective 

flooding to reduce the number of messages; and the 
control of the message flow. Supernodes create 
centralization points on a distributed network, which 
inter-connect lower power and more unstable nodes. 
They define a backbone that carries most of the 
flooded messages. In result, a small world effect is 
created that reduces the range needed to run lookups. 
However, supernodes also create concentration 
points, which can become a bottleneck on the system 
through link and server saturation or the increased 
message delay in result of flow control. Replication 
of id information distributes the load through several 
nodes. When replication is done at supernodes (e.g. 
a Clip2 Reflector replicates information for all 
subordinate nodes), it restricts flooding to a second 
hierarchical layer (connecting supernodes) with a 
slight increase in update costs (see table 1). 

On the other hand, guided search approaches 
create an id table. Updates and lookups are made on 
nodes dedicated to that id, selected using operation 
route(id). The table can be kept on a centralized 
node or partitioned and distributed on several nodes. 
Centralized approaches (e.g. Napster) simplify 
routing but introduce a single point of failure that 
can slow down the entire system. The performance 
of distributed approaches depends on the structure of 
id and on the geometry of the overlay network 
defined by the nodes (Gummadi, 2003). The 
distributed approaches include the big majority of 
naming and routing services and structured P2P. 

DNS is a good example of the first group. DNS 
relies on a hierarchical structure of nodes matched 
with the identifier hierarchy. This approach 
simplifies routing because the name completely 
defines the resolution path. If h is the maximum 
hierarchical level, it has a maximum length of 2h-1. 
However, it contains most of the centralized 
approaches limitations, benefiting only from the 
information fragmentation over several nodes. DNS 
improves its scalability using extensively caching 
and node replication. Caching reduces the amount of 
information exchanged amongst peers but prevents 
the use of DNS when referring to moveable or on-
off entities. It was not a requirement at the time 
because IP addresses did not change frequently. The 
inflexibility of DNS routing (a single path towards 
the node with the required id) dwarfs the effects of 
node replication. The localization of id resolution 
(the selection of the nearest replica) is only 
supported by DNS extensions (e.g. Internet2 
Distributed Storage Information (Beck, 1998)). 

Structured P2P are based on distributed hash 
tables (DHT). Location servers (nodes) and 
registrations are mapped to identifiers (ids), often 
calculated using hash functions. Nodes keep 
registrations for a subset of the id space. They 
distribute routing information creating self-



 

organizing node structures, which exhibit some 
hierarchical characteristics. Each node behaves as a 
classical root for its local ids. Structured P2P 
services that support localization on the resolution of 
id for replicated objects include: Pastry (Rowstron, 
2001), Tapestry (Hildrun, 2002), Brogade (Zhao, 
2002), and other algorithms derived from Tapestry 
(e.g. Kademlia, AGILE).  

Pastry and Tapestry are based on similar 
approaches. They both use strings of digits of base b 
as Ids (with a maximum N) and organize the overlay 
network in multiple trees (one for each Id). Pastry 
structure is a little bit more complex because it adds 
a complementary ring structure (L pointers), for 
reliability and for improving the last routing hops. 
However, the main routing scheme for Pastry is 
based on a tree. Each node is a root for the local Ids 
tree. The root connects to nodes which differ only in 
the last id digit. Successive layers differ on 
increasing number of digits. Nodes are members of 
several id trees in different layers. Each node 
maintains a routing table with logb N columns (one 
for each hierarchical level – related to the number of 
shared digits) and b rows (one for each digit value). 
Nodes route ids following the tree from the starting 
node to the root node, resulting in a maximum path 
length of logb N steps. Tapestry optimizes lookup 
locality for replicated sets by disseminating pointers 
to the application servers on the path from the node 
with the server till the root (associated with the id). 
Lookup is done following the direction to the id's 
root, until a first registration is found. Pastry only 
replicates registrations on the direct neighbors of the 
root node for an id tree, producing longer resolution 
paths and less precise localization. 

Brogade proposes the use of two layers of P2P 
overlay networks, running independent Tapestry 
services. Nodes with higher bandwidth connections 
and higher processing power are promoted to 
supernodes. Supernodes collect information about 
the lower layer node ids inside their region, and treat 
them as data on their layer. Brogade uses 
hierarchical routing with two levels. Users benefit 

from the use of more powerful links on connections. 
However, due to the pure hierarchy, supernodes 
create centralized points of failure and preclude the 
use of other lookup paths on the lower hierarchy 
level. The localization properties of Tapestry may 
also degrade due to the two-level routing. Local 
lookups use only the lower layer, but longer lookups 
go through the higher Tapestry network layer, 
resulting on a total path of O(2logb(k)+logb(N/k)). 

Globe grid location service (Steen, 1998) also 
proposed an overlay tree structure. Globe location 
service trades off update flexibility for a bigger 
resolution path. Instead of complete information, 
nodes store forward pointers to other nodes (hints), 
which define a chain pointing to the nodes with the 
information. Hints usage reduces update costs 
because updates are propagated only to a level 
where another registration exists. On structured P2P 
updates are always propagated to the root node. 
Globus grid information service (Czajkowski, 2001) 
adopted a different approach: each node provides 
complete information about resources on a set of 
compute nodes (named a virtual organization). 
Nodes are organized hierarchically, feeding data 
upwards the hierarchy using a data access protocol 
and an event service. Nevertheless, if the system 
becomes very dynamic their choice may fail due to 
the update overhead.  

Can the existing services support dynamic 
application server creation and peaks of user 
demand? For very dynamic information (e.g. Ad 
Hoc networks or fast moving objects) and for 
limited ranges, flooding approaches are capable of 
fulfilling all requirements (see update and join costs 
in table 1). For a scalable large scale view guided-
search approaches must be adopted but they fail if 
the information dynamics is not slow enough. 
During lookup load peaks the maximum number of 
lookups supported depends on the number of nodes 
with the information for the id, their capacity, but 
also on the total number of paths available to route 
to those nodes. If a concurrent update peak is also 
running, it also depends on update cost and on how 

 neighbours search # paths update Join 
Gnutella n N Path(N) 1 n 
Gnut. supernode 
k agregation 

ns for supernodes N/k Path(N/k) 2 n+1 for nodes 
ns+k for supernodes 

DNS - h levels 1 node above � 2h-1 1 � 2h-1 1 for leafs 
Pastry O(b.logb N+L) O(logb N) logb N O(logb N) O(b.(logb N)2) 
Tapestry O(b.logb N) O(logb N) logb N O(logb N) O(b.logb N) 
Brogade with k  
Aggregation 

O(b.logbk+1) nodes 
O(b.logb N)  supern. 

O(logb (Nk)) 1 for long 
range 

O(logb N) O(b.logb k)        for nodes 

O(b.logb k+b.logb(N/k))  
 

Table 1: Summary of services features: (neighbours) number of neighbours, (search) search costs, (#path) maximum number 
of independent paths available, (update) updates costs and (Join) node insertion costs. n and ns are the average number of 
neighbours. N is the toal number of nodes. b and L are algorithm parameters. 



 

fast updates are available to the users. Most of the 
structured P2P systems propose the use of 
information replication on neighbor nodes, and 
caching of previous lookup results (useless for this 
problem) to handle overload. However, they do not 
define an algorithm to dynamically perform the 
replication, requiring some form of external 
configuration. They also suffer from an intrinsic 
limitation of a tree organization: it concentrates too 
much load on the root node. Figure 1 illustrates the 
problem. If the top hierarchical layer has k branches, 
from which, n branches have the (application) id 
registered, then the peak lookup load on the root 
node is ( )11 −⋅− knQ  for a uniformly distributed 
global lookup load of Q queries per second. This 
means that a constant fraction of the load will be 
handled by the root node. This paper proposes a 
solution to these two problems. 
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Figure 1: Load distribution on a pure tree structure 

4 LOCATION SERVICE 
ARCHITECTURE 

This paper proposes a service location based on 
a dynamic tree, although enhanced with meshed 
structures connecting the nodes at each hierarchical 
level. For low load levels, the location service 
operates using only the paths defined by the tree. For 
higher load levels, extra horizontal paths are added, 
increasing the number of paths until the maximum 
supported by the overlay network. When the load is 
really intense new location servers can be created to 
split the load, and possibly, a new layer of the 
hierarchy can be created. This paper proposes an 
algorithm to control the activation of the meshed 
paths and the replication of nodes, based on load 
measurements. 

The lowest layer forms a static meshed network 
of simple proxy entities (Local Proxy – LP) 
responsible to both connect to the location service 
and maintain neighborhood relationships. It forms a 
topological grid to provide a sense of “space” to the 
system (can be physical space, something related 
with availability of bandwidth between servers, etc.). 
Local Proxies have complete knowledge of the 

entities in their fixed region (be it an active node, or 
a set of nodes). They can resolve the identifier using 
the upper layers. 

The layers above are composed of location 
servers, named L. L servers usually have hints 
pointing to another L server, but may have complete 
registration information on their first hierarchical 
level. L server overlay network structure is created 
dynamically based on the maximum range specified 
on update operations and on the load (see below). 
We assume that an L server can be dynamically 
dispatched on a particular compute node. The 
hierarchy is created using the clustering algorithm 
presented in (Bernardo, 1998b), which runs the 
highest hierarchical level L servers on the more 
resourceful compute nodes (inline with the 
supernode approach). As long as there are global 
range application servers registered, a hierarchical 
tree structure exists covering the entire network. 
Otherwise, if all applications are regional or local, 
there are only several independent trees. Clients can 
still locate ids using a flooding approach on the 
various relative roots (limited by the range 
parameter). A meshed structure connects the L 
servers of a tree at each hierarchical level, except the 
first L-server hierarchical level, which connects the 
entire network. But, as table 1 shows the flooding 
approach does not scale for a large number of 
clients. Therefore, we assume that application 
servers always specify the entire range where their 
clients will come from.  

5 ADAPTATION OF THE 
RESOLUTION PATH 

When an application server registers its 
reference, LP forwards its registration information to 
the first level L server. This L server disseminates a 
hint up the tree in direction to the root creating a 
single vertical path to resolve the id. Vertical 
dissemination stops when a hierarchical layer node 
(h) which embraces the required number of LPs 
specified in the range or when another replica hint 
for the same id is found. 

A. SpreadRange 

For handling the root overload problem, L 
servers may also disseminate hints horizontally, 
creating extra paths that reduce the lookup load on L 
servers at higher hierarchical layers. The scope of 
the horizontal dissemination area is defined by the 
parameter SpreadRange. For instance, in fig. 2, if L2

d 
SpreadRange for the illustrated application server 
includes L2

e, then L3
a stops answering to lookups 

coming from L2
e (see fig. 1). 
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Figure 2: SpreadRange parameter 

L servers experiencing overload control 
horizontal dissemination for the immediately lower 
layer L servers, using SpreadRange Control 
Messages: they may send a request to some of their 
lower layer L servers to increment or reduce the 
SpreadRange on a set of identifiers. Each receiver 
tests its maximum range and local load, and may 
refuse an increase if they are higher than the 
maximum values allowed. When an identifier is first 
registered, no horizontal dissemination is used, 
unless a hint of an existing replica has been received 
from a neighbor L server. The SpreadRange 
parameter at an L server will be increased or 
decreased in result of increases and decreases of the 
lookup load coming from near L servers. The 
rationale is to deploy the structure with the lowest 
update overhead, yet adapted to the lookup load. 

If several application server replicas are 
available on neighbor regions, L servers should 
reply to the lookups distributing the load amongst 
the application servers taking into account the 
"distance" to each of the replicas. On this case, all L 
servers must use the same SpreadRange value, to 
guarantee a balanced load distribution. 

B. CoreRange 

Horizontal hint dissemination can still not solve 
the problem because the load is still concentrated on 
the branch linking to the LP of the application 
server. Therefore, a stronger form of horizontal 
dissemination was introduced: the cloning of the 
exact L server information (and not hints) about a set 
of "hot" ids on the neighbor L servers, called 
replicates. The scope of replicate horizontal 
dissemination is controlled by the parameter 
CoreRange. The acceptance of a replicate is not 
mandatory. L servers may refuse to accept a 
replicate if they already are overloaded. Hence, the 
operation may fail. If an L server accepts the 
replicate, it disseminates the replicate in parallel 
with its local hints, vertically and possibly 
horizontally. 

The cloning of the exact information on other L 
servers reduces the lookup load on the original L 
server. Several vertical paths can be created if 
CoreRange is used on several contiguous 
hierarchical layers. As fig. 3 shows, the lookup load 
is distributed between three vertical paths when 

CoreRange is active on the first (L1
h) and second 

(L2
b) hierarchical layers. By combining 

SpreadRange and CoreRange dissemination, L 
servers are able to control the number of paths 
available to resolve an id autonomously, creating an 
effective mechanism to handle peaks of load.  
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Figure 3: CoreRange parameter 

However, core meshes also increment the update 
overhead. In the special case of the lowest 
hierarchical layer, the information is the complete 
information and not a hint. A CoreRange 
modification may produce a vertical and horizontal 
dissemination (if SpreadRange is not null) of hints. 
Therefore, CoreRange will be increased or decreased 
in result of increases and decreases of the lookup 
load from far away or upper layer L servers. 

When several application server replicas are 
available in the neighborhood, L server must 
distribute the load uniformly amongst them. Once 
more, this can only be achieved if all L servers with 
those hints use the same CoreRange value. L servers 
in the SpreadRange region forward lookups to L 
servers in the CoreRange region. The former servers 
have to know most of the latter to be able to 
distribute the lookups evenly. Therefore, the 
SpreadRanges of the L servers in the CoreRange 
region must cover more or less the same area. It can 
be proved that load can be balanced for a network 
with a constant number of neighbors, if L servers 
within SpreadRange select the forwarding L server 
within the CoreRange using a weight distribution 
algorithm, where weights decrease geometrically 
with the distance in a factor inversely proportional to 
the average number of neighbor L servers. On an 
unknown network it is better to use a lower factor – 
it is better to concentrate the load in the border of the 
CoreRange region than in the interior, because 
probably there will be more L servers at the border. 
With these mechanisms the original L server 
receives less lookup requests from the SpreadRegion 
per L server, but receives from all directions. 

C. L server segmentation and hierarchy 

The final mechanism to handle load peaks is the 
creation of extra L servers at the same hierarchical 



 

layer. It reduces the number of application servers 
registered on some of the L servers. Additionally, if 
the creator L server is within the CoreRange region 
of another server, it increases the total processing 
capacity of that region, until the maximum compute 
power available.  

If the density of L servers on a hierarchical layer 
becomes too high (compared to the border layers), 
the L server clustering algorithm may react creating 
new hierarchical levels. In result, the number of 
hierarchal levels is not uniform throughout the 
network: crowded areas can have deeper branches 
than other less crowded areas. 

D. Load adaptation algorithm 

An inter-L server co-ordination algorithm is used 
to guarantee that L servers are enough to respond to 
the requests and to keep the hints coherent during 
internal modifications. It is assumed that a 
percentage of the bandwidth is always available for 
control and signaling functions. The algorithm reacts 
to load measurements and registrations of identifiers 
using four main parameters: SpeadRange; 
CoreRange; the number of L servers at each 
hierarchical layer; and the number of hierarchical 
layers. 

L servers monitor their local lookup load, 
determining if the lookups were routed from lower 
layer or “near” neighbors L servers (FromDown), or 
if they were routed from higher layer or “distant” L 
servers (FromUp). L servers measure their average 
load on fixed length intervals, using (1) (a modified 
discrete first order filter to attenuate the variation of 
the load measured). Coefficient αi has two different 
values whether the load increased or decreased (αup 
and αdown) compared to the previous average value. 
In result, the algorithm reacts more promptly to 
raises of the load. The load algorithm makes the 
system react in situations of overload (a threshold 
value of MaxLoad) and underload (MinLoad). L 
servers also monitor their queue, and react when it 
increases above a threshold value (1stMaxQ). This 
second mechanism speeds up response for sudden 
raises of load. Each time there is a reaction, a 
minimum interval time (MinPeriod) is defined to 
prevent a second reaction. When this time expires, 
the adaptation is fired again if the queue length 
increases above a new threshold. The new threshold 
takes into account the clients in the queue plus a 
constant increment (MQinc). The increase is done in 
such a way that the more loaded the system is (the 
delay increases and so does the queue) the greater is 
the sensitivity of the threshold (in relative terms the 
value has decreased) making the whole system react 
more often. 

loadn= αi.measurementn + (1-αi).loadn-1 (1) 

When an overload trigger happens in an L 
server, it tries to: 
1. if FromDown then 

Increase SpreadRange on the lower layer 

L servers; 

if FromUp then  

Increase local CoreRange; 

2. If 1 failed and (loadn > NewReplicaLoad)  

Segment L server; if violates density, 

modify hierarchy 

When an underload trigger happens in an L 
server, it first tries to reduce SpreadRange and 
CoreRange, turning the system into a more pure 
hierarchy. Afterwards, if loadn goes below a 
minimum threshold, the L server tries to self-
destruct. Before, it runs an agreement protocol to 
assess that all neighbor L servers are unloaded and 
select one of them to receive its lower layer L 
servers.  

The location service parameters are also 
influenced by application server updates. If a server 
changes its location frequently the SpreadRange and 
CoreRange parameters will be reset frequently to 
zero, and in consequence, the hint dissemination is 
almost restricted to the vertical dimension, with low 
update overhead. A bigger number of application 
replicas produce a more uniform id hint distribution 
through the L server network, concentrating load on 
the lower hierarchical levels. This characteristic 
allows a good adaptation to extreme load peaks. 

Compared to the approaches analyzed is section 
3, the proposed location service presents search and 
update costs comparable to DNS for low load levels. 
When load increases, update costs are increased by a 
value proportional to the number of hierarchical 
levels (h), the extra number of paths created, and the 
optional horizontal load balancing costs. Notice, 
however, that update costs are reduced by the use of 
chained hints, which restrict the high priority update 
area to the first hierarchical L servers with complete 
reference information (except for deletions, which 
will seldom occur during overload).  

6 SIMULATIONS 

The location service presented on this paper was 
simulated using the Ptolemy simulation system 
(Ptolemy). The simulator implements a dynamic 
application, where servers measure their request 
queue and react to local overload creating 
application server clones, in a number proportional 
to the ratio between the growth rate of the queue and 
the average service time. We assumed that 
application servers run in parallel without inter-



 

synchronization. The complete application algorithm 
is described in (Bernardo, 1998).  

Clients make a resolve request of the application 
id on the nearest L server and treat the response. The 
response is either a definitive one and the 
application server is invoked, or is a reference to 
another L server in which case the client repeats the 
process. If an L server takes more than 0.5 tics of 
simulation time to respond, clients go back to the 
previous L server. It is assumed that delays are due 
to load, and new application servers could appear in 
the meanwhile allowing the client to get a fresh one. 

Application servers run one client at a time 
during the service time (S), and keep the remaining 
requests on a queue. If the application server takes 
more than 1.5 tics to answer to a client, the client 
goes back to the location service and tries to locate 
another application server. Again, this procedure 
allows clients to deal with location service 
adaptation, using new fresh paths that could appear. 

All simulations were conducted with a network 
of 625 compute nodes where application and L 
servers run. Each node runs a LP that has an average 
of three connections to its neighbors, and the 
network has a maximum distance of 24 node hops. 
At time zero the location service has three 
hierarchical layers, with 75 L servers at the first 
layer, five L servers at the second layer and a single 
root L server at the third layer. Simulations evaluate 
the behavior of the location service when, at instant 
one (tic), a total load of 625 application clients per 
tic (uniformly distributed on the network) try to run 
the application with a single starting application 
server. During the simulation, L servers adapt to the 
load. They measure the processor utilization time 
during intervals of 0.5 tics and test the average load 
after each measurement interval (using 75% for �up 
weight and 50% for �down). MaxLoad and MinLoad 
thresholds were respectively 95% and 0.2%. L 
servers also monitor the lookup queue lengths, 
reacting with parameters MinPeriod and MQinc, 
respectively 0.2 tics and ten clients. 1stMaxQ 
depended to the L server lookup service time. 

In order to test scalability, the lookup service 
time (1/�L) took six values raging from 1 mtic (1000 
lookups per tic) to 20 mtics (50 lookups per tic). 
1stMaxQ was set to �L. Longer values put more 
stress on the location service. The largest value 
requires that at least thirteen L servers have 
references to the application server, to handle the 
load. Experiments with the minimum value showed 
that a pure hierarchy could do the job.  

Three kinds of application behavior were tested: 
1 - a static application server with a service time of 
0.001 tics; 2 – an adaptive application behavior with 
service time of 0.01 tics, which originated a small 
set of application servers (~10); 3 - an adaptive 

application behavior with a service time of 0.1 tics, 
which originated a large set of application servers 
(~100). For situations 2 and 3, the time needed to 
create a clone of an application server was set to one 
tic. The scalability of the proposed algorithm can be 
proved by the time it takes to reduce the number of 
client lookups waiting on the L servers queues and 
the total number of clients waiting on the system 
(both L server queues and application server 
queues), respectively tStabL and tStab, to values 
lower than the rate of incoming clients (312 
elements). Figure 4 shows that for every 
combination tested the location service stabilized. 
tStabL does not have a strong relation with the value 
of 1/�L, except for the highest values tested with a 
single application server. The faster reactions of the 
queue length triggered mechanism for loaded 
systems compensated the extra adaptations, showed 
in figure 5. On behavior 1 (single application server) 
a pure tree would become overloaded for values of 
1/�L above 1.6 mtics. Above this value, L servers at 
second and third layer became overloaded, and set 
SpreadRange on the first layer to its maximum 
allowed value (6). The value of CoreRange 
increased with the growth of 1/�L, reaching its 
maximum allowed value for 1/�L = 20 mtics (where 
two additional L servers were created on the first 
hierarchical layer). For behaviors 2 and 3 the 
creation of extra application servers helped to 
disseminate the id lookup load amongst several 
branches of the location service hierarchy, reducing 
the final values of CoreRange and SpreadRange. 
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Figure 4: Stabilization times for the location service 
(tStabL) and the total system (tStab) 

Notice that tStab is almost independent of both 
the lookup and the application service times when 
dynamic application server deployment is used. 
When the location service adaptation time is slower, 
the location service accumulates more clients on the 
L server queues. Once L servers react these clients 
are received on the application servers at a larger 
rate, creating a larger number of application server 



 

clones. In consequence, these clients will be 
processed at a higher rate.  
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Figure 5: CoreRange and SpreadRange values at instant 
100 for first layer L servers with application registrations 

7 CONCLUSIONS 

Location services will play a very important role 
on future Internet services and applications. This 
paper evaluates some of the most important 
contributions from the P2P and grid community to 
solve the problem, and proposes solutions to two 
unhandled problems: the tree root bottleneck and the 
dynamic control of information replication. Previous 
services relied on a fixed number of paths and nodes 
to handle search load. Caching solved much of the 
overload problems however it also prevented the 
applications adaptation during the lifetime of cached 
values. The proposed service adapts to the load, 
creating and destroying paths on demand, in order to 
have the minimum update and search overhead. The 
update costs are reduced by the use of chained hints 
and by deploying just enough search paths to handle 
the load. Simulations results show that the solution 
scales with the relative increment of the load and is 
capable of handling concurrent search and update 
load.  

Several other aspects of scalability could not 
have been addressed here: how does the entire 
system cope with the increase on the number of the 
identifiers? What are the consequences of slow and 
fast mobility for the coherence of the information on 
the servers? How large can the exchange of data be 
when the system is loaded due to several identifiers 
making the SpreadRange and the CoreRange raise 
toward their maximums? Another investigation 
subject is the support for ad hoc wireless networks. 
This proposal assumes that the core LP network 
changes seldom. For ad hoc we are investigating a 
new overlay structure that improves the performance 
of search based approaches.  
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