
A DECENTRALIZED LOCATION SERVICE
Applying P2P technology for picking replicas on replicated services

Luis Bernardo, Paulo Pinto
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, P-2829-516 Caparica, Portugal

Email: lflb@uninova.pt, pfp@uninova.pt

Keywords: Scalable Internet Services and Applications, location service, self-adaptable service, peer-to-peer

Abstract: Scalable Internet services are based on sets of peer application servers. A decentralized location service is
used to resolve human readable application identifiers and return the nearest application server reference.
This paper evaluates several services and algorithms from the Internet, grid and peer-to-peer community
services. It identifies two potential problems and proposes a new approach for handling them. Existing
techniques structure the overlay networks using tree structures. The proposed service enhances the structure
with meshed structures at each level, creating dynamically multiple paths to enhance scalability. We present
a study and simulation results on one aspect of scalability – sudden load of requests from users. Our service
adapts to the load reaching a stable stage and performing resolution requests before a certain time limit.

1 INTRODUCTION

The growing number of users, computers, and
applications servers is rapidly driving Internet to a
new reality. An Internet application can no longer be
a single server running on a single node.
Applications must be supported by peers of
machines. The convergence of web services and grid
technology (Foster, 2002) provides a hint for what
might be the future Internet applications.

An open architecture for applications must
necessarily detach the identification of an
application from the location of the application
servers, in order to cope with a huge community of
users and a large dynamic set of servers (peers).
Such applications must not be identified by an IP
address has present URLs are. Instead, an
intermediate identifier must be used to bridge a
human significant representation to the actual
servers' location. This introduces the necessity for a
middleware service that resolves the intermediate
identifier to an application server reference.

This paper focuses on the implementation of
such a location service. The location service must
adapt to the dynamics of the application server peers
and provide a scalable service to the applications.
Section 2 presents an overview of the envisioned
scenario. On section 3 we review several proposals
of location-like services from different communities.
We analyze their ability to handle simultaneous
peaks of lookups and updates, and the resulting load
distribution on the network. On section 4 and 5, we

present our location service proposal. The paper
describes its architecture and algorithms, in light of
the same requirements. We show that the
introduction of a dynamic structure provides a
significant improvement over other approaches. The
location service performance is evaluated using a set
of simulations under loaded conditions on section 6.

2 PROBLEM DEFINITION

This paper assumes the existence of an active
network, with a ubiquitous set of compute nodes,
where application and middleware servers may run.
A grid middleware layer enables the dynamic
deployment of application and service servers on
demand, and the access to network resources,
including bandwidth and processing power. Notice
though, that Internet is not homogeneous. We
assume that it is composed by several interconnected
high-bandwidth core networks, which interconnect a
huge number of high-bandwidth and lower
bandwidth networks. In order to avoid bottlenecks at
the core, communication should be localized.

The location service is one of the key
components for the future Internet scalability. The
location service must provide an anycast resolution
(Partridge, 1993) for the intermediate application
identifiers. It must return the location of the
application server nearest to the client. The actual
metrics changes depending on the location service
and on the application requirements, but it may
include hops, bandwidth, stability of the nodes,
processing power, etc.

The location service creates an overlay network
on top of the compute nodes, which supports the
application server lookup operation. The user
preferred applications evolve in time. For instance, a
local news service may become a top news
application due to a notorious event (e.g. a local
elections tie or an accident), or an e-commerce site
may jump to the top due to aggressive marketing. A
huge jump on the preference order may produce a
huge increment on the number of clients (n2/n1 if
Zipf distribution (Adamic, 2002) is followed). This
will lead necessarily to the increase on the number
of servers to cope with the demand (e.g. Content
Delivery Network applications (Vakali, 2003)
distribute replicas of pages to handle load peaks). A
generic algorithm was proposed in (Bernardo, 1998)
to control the replica deployment. The location
service must be able to handle this peak of updates,
and in parallel, the concurrent peak of lookups.
Centralized approaches, based on a home location
server may fail due to a peak of millions of requests.
Caching solutions may also fail, because they may
conceal the appearing of new application server
replicas.

The envisioned location service provides two
operations: lookup(id, range) and update(id,
serv_reference, range). Each application server
registers on the location service its reference
associated with a unique application identifier (id)
for a certain range. Clients search for one or more
replicas within a range on the network.

3 LOCATION-LIKE SERVICES

Several existing services support the location
service required functionalities. They differ on how
lookups are performed: either use flooding
(broadcast when available) or guided search.

Flooding approaches are common for micro-
location services (e.g. Jini (Gupta, 2002)), for
unstructured peer-to-peer (P2P) networks (e.g.
Gnutella), and for routing algorithms in Ad Hoc
networks (e.g. AODV (Perkins, 2003)). Updates are
made on a local node, resulting on random
information distribution. A flooding approach does
not require (almost) any setting up, and adapts
particularly well to unstable networks, unstable data
and unstable nodes. However, it has high search
costs and does not scale with the increase of the
number of clients and of the lookup range
(Schollmeier, 2002). Therefore, it is not adapted to
provide a global view of a system. Strategies for
reducing the lookup costs include (Chawathe, 2003):
the creation of supernodes; the replication of
information on neighbor nodes; the use of selective

flooding to reduce the number of messages; and the
control of the message flow. Supernodes create
centralization points on a distributed network, which
inter-connect lower power and more unstable nodes.
They define a backbone that carries most of the
flooded messages. In result, a small world effect is
created that reduces the range needed to run lookups.
However, supernodes also create concentration
points, which can become a bottleneck on the system
through link and server saturation or the increased
message delay in result of flow control. Replication
of id information distributes the load through several
nodes. When replication is done at supernodes (e.g.
a Clip2 Reflector replicates information for all
subordinate nodes), it restricts flooding to a second
hierarchical layer (connecting supernodes) with a
slight increase in update costs (see table 1).

On the other hand, guided search approaches
create an id table. Updates and lookups are made on
nodes dedicated to that id, selected using operation
route(id). The table can be kept on a centralized
node or partitioned and distributed on several nodes.
Centralized approaches (e.g. Napster) simplify
routing but introduce a single point of failure that
can slow down the entire system. The performance
of distributed approaches depends on the structure of
id and on the geometry of the overlay network
defined by the nodes (Gummadi, 2003). The
distributed approaches include the big majority of
naming and routing services and structured P2P.

DNS is a good example of the first group. DNS
relies on a hierarchical structure of nodes matched
with the identifier hierarchy. This approach
simplifies routing because the name completely
defines the resolution path. If h is the maximum
hierarchical level, it has a maximum length of 2h-1.
However, it contains most of the centralized
approaches limitations, benefiting only from the
information fragmentation over several nodes. DNS
improves its scalability using extensively caching
and node replication. Caching reduces the amount of
information exchanged amongst peers but prevents
the use of DNS when referring to moveable or on-
off entities. It was not a requirement at the time
because IP addresses did not change frequently. The
inflexibility of DNS routing (a single path towards
the node with the required id) dwarfs the effects of
node replication. The localization of id resolution
(the selection of the nearest replica) is only
supported by DNS extensions (e.g. Internet2
Distributed Storage Information (Beck, 1998)).

Structured P2P are based on distributed hash
tables (DHT). Location servers (nodes) and
registrations are mapped to identifiers (ids), often
calculated using hash functions. Nodes keep
registrations for a subset of the id space. They
distribute routing information creating self-

organizing node structures, which exhibit some
hierarchical characteristics. Each node behaves as a
classical root for its local ids. Structured P2P
services that support localization on the resolution of
id for replicated objects include: Pastry (Rowstron,
2001), Tapestry (Hildrun, 2002), Brogade (Zhao,
2002), and other algorithms derived from Tapestry
(e.g. Kademlia, AGILE).

Pastry and Tapestry are based on similar
approaches. They both use strings of digits of base b
as Ids (with a maximum N) and organize the overlay
network in multiple trees (one for each Id). Pastry
structure is a little bit more complex because it adds
a complementary ring structure (L pointers), for
reliability and for improving the last routing hops.
However, the main routing scheme for Pastry is
based on a tree. Each node is a root for the local Ids
tree. The root connects to nodes which differ only in
the last id digit. Successive layers differ on
increasing number of digits. Nodes are members of
several id trees in different layers. Each node
maintains a routing table with logb N columns (one
for each hierarchical level – related to the number of
shared digits) and b rows (one for each digit value).
Nodes route ids following the tree from the starting
node to the root node, resulting in a maximum path
length of logb N steps. Tapestry optimizes lookup
locality for replicated sets by disseminating pointers
to the application servers on the path from the node
with the server till the root (associated with the id).
Lookup is done following the direction to the id's
root, until a first registration is found. Pastry only
replicates registrations on the direct neighbors of the
root node for an id tree, producing longer resolution
paths and less precise localization.

Brogade proposes the use of two layers of P2P
overlay networks, running independent Tapestry
services. Nodes with higher bandwidth connections
and higher processing power are promoted to
supernodes. Supernodes collect information about
the lower layer node ids inside their region, and treat
them as data on their layer. Brogade uses
hierarchical routing with two levels. Users benefit

from the use of more powerful links on connections.
However, due to the pure hierarchy, supernodes
create centralized points of failure and preclude the
use of other lookup paths on the lower hierarchy
level. The localization properties of Tapestry may
also degrade due to the two-level routing. Local
lookups use only the lower layer, but longer lookups
go through the higher Tapestry network layer,
resulting on a total path of O(2logb(k)+logb(N/k)).

Globe grid location service (Steen, 1998) also
proposed an overlay tree structure. Globe location
service trades off update flexibility for a bigger
resolution path. Instead of complete information,
nodes store forward pointers to other nodes (hints),
which define a chain pointing to the nodes with the
information. Hints usage reduces update costs
because updates are propagated only to a level
where another registration exists. On structured P2P
updates are always propagated to the root node.
Globus grid information service (Czajkowski, 2001)
adopted a different approach: each node provides
complete information about resources on a set of
compute nodes (named a virtual organization).
Nodes are organized hierarchically, feeding data
upwards the hierarchy using a data access protocol
and an event service. Nevertheless, if the system
becomes very dynamic their choice may fail due to
the update overhead.

Can the existing services support dynamic
application server creation and peaks of user
demand? For very dynamic information (e.g. Ad
Hoc networks or fast moving objects) and for
limited ranges, flooding approaches are capable of
fulfilling all requirements (see update and join costs
in table 1). For a scalable large scale view guided-
search approaches must be adopted but they fail if
the information dynamics is not slow enough.
During lookup load peaks the maximum number of
lookups supported depends on the number of nodes
with the information for the id, their capacity, but
also on the total number of paths available to route
to those nodes. If a concurrent update peak is also
running, it also depends on update cost and on how

 neighbours search # paths update Join
Gnutella n N Path(N) 1 n
Gnut. supernode
k agregation

ns for supernodes N/k Path(N/k) 2 n+1 for nodes
ns+k for supernodes

DNS - h levels 1 node above � 2h-1 1 � 2h-1 1 for leafs
Pastry O(b.logb N+L) O(logb N) logb N O(logb N) O(b.(logb N)2)
Tapestry O(b.logb N) O(logb N) logb N O(logb N) O(b.logb N)
Brogade with k
Aggregation

O(b.logbk+1) nodes
O(b.logb N) supern.

O(logb (Nk)) 1 for long
range

O(logb N) O(b.logb k) for nodes

O(b.logb k+b.logb(N/k))

Table 1: Summary of services features: (neighbours) number of neighbours, (search) search costs, (#path) maximum number
of independent paths available, (update) updates costs and (Join) node insertion costs. n and ns are the average number of
neighbours. N is the toal number of nodes. b and L are algorithm parameters.

fast updates are available to the users. Most of the
structured P2P systems propose the use of
information replication on neighbor nodes, and
caching of previous lookup results (useless for this
problem) to handle overload. However, they do not
define an algorithm to dynamically perform the
replication, requiring some form of external
configuration. They also suffer from an intrinsic
limitation of a tree organization: it concentrates too
much load on the root node. Figure 1 illustrates the
problem. If the top hierarchical layer has k branches,
from which, n branches have the (application) id
registered, then the peak lookup load on the root
node is ()11 −⋅− knQ for a uniformly distributed
global lookup load of Q queries per second. This
means that a constant fraction of the load will be
handled by the root node. This paper proposes a
solution to these two problems.

La 3

La 2 Lb 2

La 1 Lc 1 Le 1 Lf 1 Lh 1 Lj 1 Lk 1 Ll 1 Ln 1

Lc 2

Lo 1 Lq 1 Ls 1

Ld 2

Lt 1 Lv 1 Lz 1 ••• ••• ••• ••• ••• ••• ••• ••• ••• •••

Le 2

Figure 1: Load distribution on a pure tree structure

4 LOCATION SERVICE
ARCHITECTURE

This paper proposes a service location based on
a dynamic tree, although enhanced with meshed
structures connecting the nodes at each hierarchical
level. For low load levels, the location service
operates using only the paths defined by the tree. For
higher load levels, extra horizontal paths are added,
increasing the number of paths until the maximum
supported by the overlay network. When the load is
really intense new location servers can be created to
split the load, and possibly, a new layer of the
hierarchy can be created. This paper proposes an
algorithm to control the activation of the meshed
paths and the replication of nodes, based on load
measurements.

The lowest layer forms a static meshed network
of simple proxy entities (Local Proxy – LP)
responsible to both connect to the location service
and maintain neighborhood relationships. It forms a
topological grid to provide a sense of “space” to the
system (can be physical space, something related
with availability of bandwidth between servers, etc.).
Local Proxies have complete knowledge of the

entities in their fixed region (be it an active node, or
a set of nodes). They can resolve the identifier using
the upper layers.

The layers above are composed of location
servers, named L. L servers usually have hints
pointing to another L server, but may have complete
registration information on their first hierarchical
level. L server overlay network structure is created
dynamically based on the maximum range specified
on update operations and on the load (see below).
We assume that an L server can be dynamically
dispatched on a particular compute node. The
hierarchy is created using the clustering algorithm
presented in (Bernardo, 1998b), which runs the
highest hierarchical level L servers on the more
resourceful compute nodes (inline with the
supernode approach). As long as there are global
range application servers registered, a hierarchical
tree structure exists covering the entire network.
Otherwise, if all applications are regional or local,
there are only several independent trees. Clients can
still locate ids using a flooding approach on the
various relative roots (limited by the range
parameter). A meshed structure connects the L
servers of a tree at each hierarchical level, except the
first L-server hierarchical level, which connects the
entire network. But, as table 1 shows the flooding
approach does not scale for a large number of
clients. Therefore, we assume that application
servers always specify the entire range where their
clients will come from.

5 ADAPTATION OF THE
RESOLUTION PATH

When an application server registers its
reference, LP forwards its registration information to
the first level L server. This L server disseminates a
hint up the tree in direction to the root creating a
single vertical path to resolve the id. Vertical
dissemination stops when a hierarchical layer node
(h) which embraces the required number of LPs
specified in the range or when another replica hint
for the same id is found.

A. SpreadRange

For handling the root overload problem, L
servers may also disseminate hints horizontally,
creating extra paths that reduce the lookup load on L
servers at higher hierarchical layers. The scope of
the horizontal dissemination area is defined by the
parameter SpreadRange. For instance, in fig. 2, if L2

d
SpreadRange for the illustrated application server
includes L2

e, then L3
a stops answering to lookups

coming from L2
e (see fig. 1).

 La 3

La 2 Lb 2 Lc 2 Ld 2 2 Le
.

Figure 2: SpreadRange parameter

L servers experiencing overload control
horizontal dissemination for the immediately lower
layer L servers, using SpreadRange Control
Messages: they may send a request to some of their
lower layer L servers to increment or reduce the
SpreadRange on a set of identifiers. Each receiver
tests its maximum range and local load, and may
refuse an increase if they are higher than the
maximum values allowed. When an identifier is first
registered, no horizontal dissemination is used,
unless a hint of an existing replica has been received
from a neighbor L server. The SpreadRange
parameter at an L server will be increased or
decreased in result of increases and decreases of the
lookup load coming from near L servers. The
rationale is to deploy the structure with the lowest
update overhead, yet adapted to the lookup load.

If several application server replicas are
available on neighbor regions, L servers should
reply to the lookups distributing the load amongst
the application servers taking into account the
"distance" to each of the replicas. On this case, all L
servers must use the same SpreadRange value, to
guarantee a balanced load distribution.

B. CoreRange

Horizontal hint dissemination can still not solve
the problem because the load is still concentrated on
the branch linking to the LP of the application
server. Therefore, a stronger form of horizontal
dissemination was introduced: the cloning of the
exact L server information (and not hints) about a set
of "hot" ids on the neighbor L servers, called
replicates. The scope of replicate horizontal
dissemination is controlled by the parameter
CoreRange. The acceptance of a replicate is not
mandatory. L servers may refuse to accept a
replicate if they already are overloaded. Hence, the
operation may fail. If an L server accepts the
replicate, it disseminates the replicate in parallel
with its local hints, vertically and possibly
horizontally.

The cloning of the exact information on other L
servers reduces the lookup load on the original L
server. Several vertical paths can be created if
CoreRange is used on several contiguous
hierarchical layers. As fig. 3 shows, the lookup load
is distributed between three vertical paths when

CoreRange is active on the first (L1
h) and second

(L2
b) hierarchical layers. By combining

SpreadRange and CoreRange dissemination, L
servers are able to control the number of paths
available to resolve an id autonomously, creating an
effective mechanism to handle peaks of load.

Le 1 Lf 1 Lh 1 Lj 1 Lk 1 Ll 1

La 3

Lc 1

Lb 2 Lc 2 La 2

Figure 3: CoreRange parameter

However, core meshes also increment the update
overhead. In the special case of the lowest
hierarchical layer, the information is the complete
information and not a hint. A CoreRange
modification may produce a vertical and horizontal
dissemination (if SpreadRange is not null) of hints.
Therefore, CoreRange will be increased or decreased
in result of increases and decreases of the lookup
load from far away or upper layer L servers.

When several application server replicas are
available in the neighborhood, L server must
distribute the load uniformly amongst them. Once
more, this can only be achieved if all L servers with
those hints use the same CoreRange value. L servers
in the SpreadRange region forward lookups to L
servers in the CoreRange region. The former servers
have to know most of the latter to be able to
distribute the lookups evenly. Therefore, the
SpreadRanges of the L servers in the CoreRange
region must cover more or less the same area. It can
be proved that load can be balanced for a network
with a constant number of neighbors, if L servers
within SpreadRange select the forwarding L server
within the CoreRange using a weight distribution
algorithm, where weights decrease geometrically
with the distance in a factor inversely proportional to
the average number of neighbor L servers. On an
unknown network it is better to use a lower factor –
it is better to concentrate the load in the border of the
CoreRange region than in the interior, because
probably there will be more L servers at the border.
With these mechanisms the original L server
receives less lookup requests from the SpreadRegion
per L server, but receives from all directions.

C. L server segmentation and hierarchy

The final mechanism to handle load peaks is the
creation of extra L servers at the same hierarchical

layer. It reduces the number of application servers
registered on some of the L servers. Additionally, if
the creator L server is within the CoreRange region
of another server, it increases the total processing
capacity of that region, until the maximum compute
power available.

If the density of L servers on a hierarchical layer
becomes too high (compared to the border layers),
the L server clustering algorithm may react creating
new hierarchical levels. In result, the number of
hierarchal levels is not uniform throughout the
network: crowded areas can have deeper branches
than other less crowded areas.

D. Load adaptation algorithm

An inter-L server co-ordination algorithm is used
to guarantee that L servers are enough to respond to
the requests and to keep the hints coherent during
internal modifications. It is assumed that a
percentage of the bandwidth is always available for
control and signaling functions. The algorithm reacts
to load measurements and registrations of identifiers
using four main parameters: SpeadRange;
CoreRange; the number of L servers at each
hierarchical layer; and the number of hierarchical
layers.

L servers monitor their local lookup load,
determining if the lookups were routed from lower
layer or “near” neighbors L servers (FromDown), or
if they were routed from higher layer or “distant” L
servers (FromUp). L servers measure their average
load on fixed length intervals, using (1) (a modified
discrete first order filter to attenuate the variation of
the load measured). Coefficient αi has two different
values whether the load increased or decreased (αup
and αdown) compared to the previous average value.
In result, the algorithm reacts more promptly to
raises of the load. The load algorithm makes the
system react in situations of overload (a threshold
value of MaxLoad) and underload (MinLoad). L
servers also monitor their queue, and react when it
increases above a threshold value (1stMaxQ). This
second mechanism speeds up response for sudden
raises of load. Each time there is a reaction, a
minimum interval time (MinPeriod) is defined to
prevent a second reaction. When this time expires,
the adaptation is fired again if the queue length
increases above a new threshold. The new threshold
takes into account the clients in the queue plus a
constant increment (MQinc). The increase is done in
such a way that the more loaded the system is (the
delay increases and so does the queue) the greater is
the sensitivity of the threshold (in relative terms the
value has decreased) making the whole system react
more often.

loadn= αi.measurementn + (1-αi).loadn-1 (1)

When an overload trigger happens in an L
server, it tries to:
1. if FromDown then

Increase SpreadRange on the lower layer

L servers;

if FromUp then

Increase local CoreRange;

2. If 1 failed and (loadn > NewReplicaLoad)

Segment L server; if violates density,

modify hierarchy

When an underload trigger happens in an L
server, it first tries to reduce SpreadRange and
CoreRange, turning the system into a more pure
hierarchy. Afterwards, if loadn goes below a
minimum threshold, the L server tries to self-
destruct. Before, it runs an agreement protocol to
assess that all neighbor L servers are unloaded and
select one of them to receive its lower layer L
servers.

The location service parameters are also
influenced by application server updates. If a server
changes its location frequently the SpreadRange and
CoreRange parameters will be reset frequently to
zero, and in consequence, the hint dissemination is
almost restricted to the vertical dimension, with low
update overhead. A bigger number of application
replicas produce a more uniform id hint distribution
through the L server network, concentrating load on
the lower hierarchical levels. This characteristic
allows a good adaptation to extreme load peaks.

Compared to the approaches analyzed is section
3, the proposed location service presents search and
update costs comparable to DNS for low load levels.
When load increases, update costs are increased by a
value proportional to the number of hierarchical
levels (h), the extra number of paths created, and the
optional horizontal load balancing costs. Notice,
however, that update costs are reduced by the use of
chained hints, which restrict the high priority update
area to the first hierarchical L servers with complete
reference information (except for deletions, which
will seldom occur during overload).

6 SIMULATIONS

The location service presented on this paper was
simulated using the Ptolemy simulation system
(Ptolemy). The simulator implements a dynamic
application, where servers measure their request
queue and react to local overload creating
application server clones, in a number proportional
to the ratio between the growth rate of the queue and
the average service time. We assumed that
application servers run in parallel without inter-

synchronization. The complete application algorithm
is described in (Bernardo, 1998).

Clients make a resolve request of the application
id on the nearest L server and treat the response. The
response is either a definitive one and the
application server is invoked, or is a reference to
another L server in which case the client repeats the
process. If an L server takes more than 0.5 tics of
simulation time to respond, clients go back to the
previous L server. It is assumed that delays are due
to load, and new application servers could appear in
the meanwhile allowing the client to get a fresh one.

Application servers run one client at a time
during the service time (S), and keep the remaining
requests on a queue. If the application server takes
more than 1.5 tics to answer to a client, the client
goes back to the location service and tries to locate
another application server. Again, this procedure
allows clients to deal with location service
adaptation, using new fresh paths that could appear.

All simulations were conducted with a network
of 625 compute nodes where application and L
servers run. Each node runs a LP that has an average
of three connections to its neighbors, and the
network has a maximum distance of 24 node hops.
At time zero the location service has three
hierarchical layers, with 75 L servers at the first
layer, five L servers at the second layer and a single
root L server at the third layer. Simulations evaluate
the behavior of the location service when, at instant
one (tic), a total load of 625 application clients per
tic (uniformly distributed on the network) try to run
the application with a single starting application
server. During the simulation, L servers adapt to the
load. They measure the processor utilization time
during intervals of 0.5 tics and test the average load
after each measurement interval (using 75% for �up
weight and 50% for �down). MaxLoad and MinLoad
thresholds were respectively 95% and 0.2%. L
servers also monitor the lookup queue lengths,
reacting with parameters MinPeriod and MQinc,
respectively 0.2 tics and ten clients. 1stMaxQ
depended to the L server lookup service time.

In order to test scalability, the lookup service
time (1/�L) took six values raging from 1 mtic (1000
lookups per tic) to 20 mtics (50 lookups per tic).
1stMaxQ was set to �L. Longer values put more
stress on the location service. The largest value
requires that at least thirteen L servers have
references to the application server, to handle the
load. Experiments with the minimum value showed
that a pure hierarchy could do the job.

Three kinds of application behavior were tested:
1 - a static application server with a service time of
0.001 tics; 2 – an adaptive application behavior with
service time of 0.01 tics, which originated a small
set of application servers (~10); 3 - an adaptive

application behavior with a service time of 0.1 tics,
which originated a large set of application servers
(~100). For situations 2 and 3, the time needed to
create a clone of an application server was set to one
tic. The scalability of the proposed algorithm can be
proved by the time it takes to reduce the number of
client lookups waiting on the L servers queues and
the total number of clients waiting on the system
(both L server queues and application server
queues), respectively tStabL and tStab, to values
lower than the rate of incoming clients (312
elements). Figure 4 shows that for every
combination tested the location service stabilized.
tStabL does not have a strong relation with the value
of 1/�L, except for the highest values tested with a
single application server. The faster reactions of the
queue length triggered mechanism for loaded
systems compensated the extra adaptations, showed
in figure 5. On behavior 1 (single application server)
a pure tree would become overloaded for values of
1/�L above 1.6 mtics. Above this value, L servers at
second and third layer became overloaded, and set
SpreadRange on the first layer to its maximum
allowed value (6). The value of CoreRange
increased with the growth of 1/�L, reaching its
maximum allowed value for 1/�L = 20 mtics (where
two additional L servers were created on the first
hierarchical layer). For behaviors 2 and 3 the
creation of extra application servers helped to
disseminate the id lookup load amongst several
branches of the location service hierarchy, reducing
the final values of CoreRange and SpreadRange.

0
1
2
3
4
5
6
7
8
9

1 3 5 7 10 20

1/ L [mtic]

st
ab

ili
za

tio
n

tim
e[

tic
] .

tStabL-1

tStabL-2

tStabL-3

tStab-1

tStab-2

tStab-3

µ

Figure 4: Stabilization times for the location service
(tStabL) and the total system (tStab)

Notice that tStab is almost independent of both
the lookup and the application service times when
dynamic application server deployment is used.
When the location service adaptation time is slower,
the location service accumulates more clients on the
L server queues. Once L servers react these clients
are received on the application servers at a larger
rate, creating a larger number of application server

clones. In consequence, these clients will be
processed at a higher rate.

0
1
2
3
4

5
6

1 3 5 7 10 20
1/ L [mtic]

R
an

g
e

core-1 core-2 core-3
spread-1 spread-2 spread-3

 µ

Figure 5: CoreRange and SpreadRange values at instant
100 for first layer L servers with application registrations

7 CONCLUSIONS

Location services will play a very important role
on future Internet services and applications. This
paper evaluates some of the most important
contributions from the P2P and grid community to
solve the problem, and proposes solutions to two
unhandled problems: the tree root bottleneck and the
dynamic control of information replication. Previous
services relied on a fixed number of paths and nodes
to handle search load. Caching solved much of the
overload problems however it also prevented the
applications adaptation during the lifetime of cached
values. The proposed service adapts to the load,
creating and destroying paths on demand, in order to
have the minimum update and search overhead. The
update costs are reduced by the use of chained hints
and by deploying just enough search paths to handle
the load. Simulations results show that the solution
scales with the relative increment of the load and is
capable of handling concurrent search and update
load.

Several other aspects of scalability could not
have been addressed here: how does the entire
system cope with the increase on the number of the
identifiers? What are the consequences of slow and
fast mobility for the coherence of the information on
the servers? How large can the exchange of data be
when the system is loaded due to several identifiers
making the SpreadRange and the CoreRange raise
toward their maximums? Another investigation
subject is the support for ad hoc wireless networks.
This proposal assumes that the core LP network
changes seldom. For ad hoc we are investigating a
new overlay structure that improves the performance
of search based approaches.

REFERENCES

Adamic, A. L., Huberman, B., 2002. Zipf´s law and the Internet.
In Glottometrics Nº 3, In http://www.ram-verlag.de.

Beck, M., Moore, T., 1998. The Internet2 Distributed Storage
Infrastructure Project: An Architecture for Internet Content
Channels. Computer Networks and ISDN systems, Vol. 30,
pp. 2141-2148, Nov.

Bernardo, L., Pinto, P., 1998. Scalable Service Deployment using
Mobile Agents. In MA'98, the 2nd International Workshop
on Mobile Agents, LNCS Vol. 1477, Springer Press.

Bernardo, L., Pinto, P., 1998b. A Scalable Location Service with
Fast Update Responses. In Globecom'98, IEEE Press.

Chawathe, Y., et al., 2003. Making Gnutella-like P2P Systems
Scalable. In SIGCOMM'03, the 2003 conference on
Applications, technologies, architectures, and protocols for
computer communications ACM Press.

Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C., 2001.
Grid Information Services for Distributed Resource Sharing.
In HPDC'10, the 10th IEEE International Symposium on
High-Performance Distributed Computing, IEEE Press.

Foster, I., et al.., 2002. Grid Services for Distributed System
Integration. IEEE Computer Vol.35, pp.37-46, June.

Gummadi, K., et al, 2003. The Impact of DHT Routing Geometry
on Resilience and Proximity. In SIGCOMM'03, ACM Press.

Gupta, R., Talwar, S., Agrawal, D., 2002. Jini Home Networking:
A Step toward Pervasive Computing. IEEE Computer, Vol.
36, pp. 34-40, Aug.

Hildrun, K., Kubiatowicz, J. D., Rao, S., Zhao, B. Y., 2002.
Distributed Object Location in a Dynamic Network. In
SPAA'02, 14th annual ACM symposium on Parallel
algorithms and architectures, ACM Press.

Partridge, C., Mendez, T., Miliken, W., 1993. Host Anycasting
Service. IETF RFC 1546.

Perkins, C., Belding-Royer, E., Das, S., 2003. Ad hoc On-
Demand Distance Vector (AODV) Routing. IETF RFC 3561.

Ptolemy home page, http://ptolemy.eecs.berkeley.edu

Rowstron, A. I. T., Druschel, P., 2001. Pastry: Scalable,
Decentralized Object Location, and Routing for Large-Scale
Peer-to-Peer Systems. In Middleware'01, 18th IFIP/ACM Int.
Conf. on Distributed Systems Platforms, LNCS Vol. 2218,
Springer Press.

Schollmeier, R., Schollmeier, G., 2002. Why Peer-to-Peer (P2P)
does scale: An analysis of P2P traffic patterns. In P2P'02, 2nd
Int. Conf. on P2P Computing, IEEE Press.

Steen, M., et al.., 1998. Locating Objects in Wide-Area Systems.
IEEE Communications, Vol. 36, pp. 104-109, Jan.

Vakali, A., Pallis, G., 2003. Content Delivery Network: Status
and Trends. IEEE Internet Computing, Vol. 7, pp. 68-74,
Nov-Dec.

Zhao, B. Y., et al., 2002. Brogade: Landmark Routing on Overlay
Networks. In IPTPS'02, the 1st Int. Workshop on Peer-to-
Peer Systems, Springer Press.

