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Abstract: In this paper, we propose a searching service optimized for highly dynamic mobile ad-hoc networks based 
on a flooding approach. MANETs unreliability and routing costs prevent the use of central servers or global 
infra-structured services on top of a priori defined virtual overlay networks. A flooding approach over a 
virtual overlay network created on-demand performs better. Flooding is supported by a light-weight 
clustering algorithm. The paper compares the relative efficiency of two clustering approaches using 1.5-hop 
and 2.5-hop neighborhood information, and of a non-clustered approach. It presents a set of simulation 
results on the clustering efficiency and on searching efficiency for low and high mobility patterns, showing 
that the 1.5-hop algorithm is more resilient to load and to node movement than the 2.5-hop algorithm. 

1 INTRODUCTION 

The problem of looking for resources on 802.11 
Mobile Ad hoc NETworks (MANETs) is complex 
due to the networks unstable nature. Nodes move 
around independently creating a very dynamic 
network topology. It is assumed that no geographic 
position information is available, which is most of 
the time true, mainly in indoor scenarios. MANET 
routing protocols can be seen as resource lookup 
service that look for IP addresses.  

Experience with fast moving nodes (Tsumochi, 
03) showed that standard proactive, table-driven, 
routing protocols perform worst than on-demand 
routing protocols, which flood the network looking 
for an address only when it is needed. It also shows 
that both approaches fail to handle extreme mobility 
conditions. The problem is that routing information 
becomes outdated too fast, especially for lengthy 
paths. Due to bandwidth restrictions, it is not 
feasible to maintain proactively the tables always 
updated. On-demand approaches fail due to packet 
collisions and due to the breaking of the return path 
in result of intermediate node movement. These 
conclusions are extensible to generic searching 
services implemented at application layers. 
Structured peer-to-peer p2p (services) and directory 
services have much higher update costs than 
flooding based services (Bernardo, 04). A flooding 
approach is more adapted to unstable MANETs due 
to the null registration costs. All efforts are 
concentrated during the search phase. 

The searching protocol performance depends 
strongly on the lower layers of the protocol stack, 
responsible for routing IP packets, and for handling 
the Medium Access Control (MAC). Traditional 

flooding peer-to-peer (p2p) services create virtual 
overlay networks. They are formed by several nodes 
connected using static TCP links. Their performance 
drops sharply on a MANET if the virtual overlay 
topology is not similar to the network physical 
topology, due to the routing protocol overhead. 
Crossing a virtual link may lead to a route recovery 
procedure (usually a network flood) if the MANET 
topology changes. 

The MANET routing protocol overhead can be 
avoided if the searching protocol's query message is 
broadcasted, hop by hop, during the searching flood 
(e.g. ad hoc mode of the JXTA rendezvous protocol 
(JXTA, 04)). However, two problems may occur: 
the 802.11 MAC layer is more error prone for 
multicast/broadcast packets than for unicast packets, 
and dense networks may suffer from the broadcast 
storm problem (Tseng, 02). This latter problem can 
be minimized organizing nodes into clusters, and 
reducing the number of nodes sending messages to 
the network.  

This paper presents a new searching algorithm, 
optimized for very dynamic continuous MANETs. It 
focuses mainly on the clustering algorithm. Section 
two overviews existing cluster based searching 
algorithms. The proposed clustering and searching 
protocols are presented on sections three and four. 
Section five presents the ns-2 simulation setup, and 
several performance measurements. Finally, section 
six draws some conclusions and presents future 
work directions. 

2 CLUSTER BASED SEARCHING 

Cluster based searching approaches group nodes 
into broadcast groups (BGs), and using a set of 
heuristics select BG leaders (BGLs), responsible for 



 

forwarding packets for their BG. Nodes periodically 
broadcast a beacon packet, that may carry (Wu, 03): 
local information (1-hop); its BGL (1.5-hop); a 
neighbor node (within radio range) list (2-hop); the 
neighbor's list with the BGLs information (2.5-hop); 
etc. Most MANET protocols adopt a 2-hop or above 
approach (e.g. OLSR (Jacquet, 01)). 2-hop is the 
minimum information required to define a set of 
active nodes that cover all nodes, usually called a 
Connected Dominant Set (CDS). Although, on an 
unstable MANET, it is possible that 2-hop and 
further distant neighbors information is out-of-date, 
introducing errors on the CDS construction that 
result in failure to cover all nodes. Additional errors 
may result from the impossibility of revoking 
explicit state configurations created using signaling 
(e.g. OLSR BGL election). 

Another approach is to adopt 1-hop strategies 
(e.g. SBA (Peng, 00)), just for maintaining the list of 
neighbors, and to use an external searching protocol 
for restraining the number of active nodes. In SBA, 
nodes delay the sending of query messages for a 
random time waiting for its possible transmission by 
other neighbors. Nodes include their neighbor list 
(Nq) on the query message before sending it. 
Receivers store the union of Nq lists received (Nu) 
and compare it with their list of neighbors (Nr), 
canceling the transmission when Nu is equal to Nr. 
ABC-QS (Choi, 02) modifies the forwarding rule 
proposed by SBA reducing searching delay: nodes 
do not delay the query message sending if the 
number of neighbors in Nr and not in Nq is above 
the number of neighbors common to Nr and Nq. 
Otherwise, they delay an average time proportional 
to the number of nodes in Nr and not in Nq. ABC-
QS may fail for dense MANETs where overlapped 
nodes may send packets without waiting. 

MANETs are not homogeneous. Some nodes 
stay together during a large period of time (e.g. 
students on a bus tour) while others move 
independently. Beacons can also be used to detect 
relative stability relationships. Toh introduced the 
concept in ABR (Toh, 97), measuring the number of 
beacons received. ABC-QS extended the metric to 
cope with asynchronous piggybacked beacons. 
Other authors introduced link stability measurements 
based on packet probability failure (McDonald, 99). 
Nevertheless, most clustering approaches do not take 
link stability into consideration (OLSR, etc.), 
producing unstable clusters for unstable MANETs.  

ABC-QS and (McDonald, 99) create proactive 
routing information within islands of stable 
connected nodes, to speed up searches. However, 
they ignore the stability information for thorough 
flooding network searches that cover several stable 
islands. This paper proposes a new solution, which 
improves flooding using stability information.  

3 CLUSTERING ALGORITHM  

The proposed clustering algorithm groups 
"stable" nodes into 1-hop radius clusters. Each node 
selects a BGL periodically using a local soft-state 
protocol. The resulting network simplified view is 
used to reduce the flooding search overhead. 

Each node periodically broadcasts a beacon 
message. All nodes that receive a beacon from a 
node ny are defined as ny neighbor nodes. Nodes 
keep a table of neighbors' link stability η (called the 
beacon table). Following ABR, link stability for ny is 
defined as the sum of consecutive beacons received 
from ny. If more than one beacon is lost, then link 
stability is set to null. The stability measurement 
trades-off a faster link failure detection (compared to 
packet loss rate measurements) for a higher 
probability of false link loss detection due to two 
successive beacon collisions. High stability values 
represent low nodes relative mobility and vice-versa.  

In each beacon message, a node sends its node 
identification, its BGL node address, and the higher 
link stability value contained in its beacon table, 
which is represented by µ. The beacon table includes 
the neighbor's address, their link stability (η); their 
BGL address; and the µ value received in the last 
beacon. Every beacon table entry is automatically 
destroyed if a beacon is not received during two 
beaconing time periods. Table 1 is a hypothetical 
beacon table of node 3 illustrated in figure 1. Node 3 
received 43 beacons from neighbor node 1.  

A node is stable if there is at least one η value in 
its beacon table that is higher than a defined 
stability_threshold. BGL selection algorithm is 
run on each node before sending a beacon. The 
selection algorithm for node na is summarized in 
figure 2. 

Table 1. Beacon table of node 3 on figure 1 

Neighb. Stability (η) BGL Neighb. Stability (µ) 
1 43 1 43 
2 8 6 64 
4 2 5 33 

 
Fig. 1. Illustration of a MANET with 3 BGs. Nodes 1, 

5 and 6 are BGLs. 
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1.  (ηmax)=find_maximum_η_value_in_table() 
2.  last_addr = MAX_INT 
3.  pre_selected = -1 
4.  if is_stable(na)  // stable node 
5.    //insert all known BGL’s stable neighbor  
      //nodes in BGL_list 
6.    for each neighborhood_node nx 
7.      insert_in_sort_list(BGL(nx),BGL_list) 
8.    if is_BGL(na) // if this node is BGL       
9.      insert_in_sort_list(na,BGL_list) 
10.   // Choose BGL based on stability and 
      // lowest address criteria 
11.   for each bglx contained in BGL_list 
12.     for each neighborhood_node nx 

13.       if ((nx=bglx)and(is_stable(nx))) 
14.         pre_selected = nx 

15.     if (pre_selected ≠-1) break; 
16.     if (na=bglx) // self-selection 
17.       pre_selected = na 

18.       break 
19.   //select new BGL 
20.   if (pre_selected=-1)//BGL is not selected 
21.     for each neighborhood_node nx 

22.       if (ηmax-η(nx)-transient_threshold ≤ 0) 
                         ∧ (addr(nx)<last_addr) 
23.         last_addr = addr(nx) 
24.         pre_selected = nx 
25. BGL_SELECTED = pre_selected 

Fig. 2. BGL node selection algorithm applied in node na. 

A stable node first computes a sort list of all 
available neighbor's BGL (lines 5 to 7), that includes 
the node in case of being BGL (lines 8 to 9). This 
list is sorted from the smallest to the largest BGL 
address. If there are BGLs selected in the 
neighborhood, the node chooses the BGL that has 
the lowest address (lines 11 to 15), which can be the 
node itself if it was chosen as BGL by a neighbor 
(lines 16 to 18). If there are no BGLs selected in its 
neighborhood, a node simply selects as BGL its 
neighbor with the highest η value (lines 20 to 24). If 
there is more than one neighbor owning the 
maximum η value then it is selected the node with 
lowest address.  

During system startup, transitory cluster overlap 
may appear, because the initial criteria for selecting 
BGL is a local measurement for link stability (lines 
21 to 23), which may differ from node to node. The 
transient_threshold was set to one, to compensate 
different beacon delivery time drifts (jitter). The 
initial BGL is the neighbor with the lowest address 
that could get the maximum stability value during 
the present beaconing period. Yet, when several 
BGLs exist within radio range connected by stable 
links, they are merged into a single cluster (lines 10 
to 18) after one beacon period. Two nodes from 
overlapped clusters sort neighbor's BGLs 
independently into the same order (only node 
address is considered) and converge to the same 
BGL.  

Cluster overlapping also occurs for continuous 
groups of stable nodes wider than one hop. The 

algorithm leads to the construction of multiple tree 
structures of BGLs, called cluster-trees, centered on 
BGLs with local minimum addresses. Each branch 
has a sequence of BGLs (ni) with increasing 
addresses, whose BGL is the branch predecessor 
(BGL(ni) = ni-1). The exception is the periphery of 
the cluster-tree, where nodes with lower addresses 
can exist. Due to line 16, a node can only self-select 
as BGL if another node previously selects him. This 
avoids the existence of single node clusters on the 
periphery of a cluster-tree.  

Within a connected stable group (a group of 
cluster-trees connected by stable links), the border 
between cluster-trees' BGLs is composed by one or 
two non-BGL nodes. It cannot be zero because lines 
12-15 would merge the BGLs. Also, it cannot be 
more than two because that would mean that a node 
would not have a BGL in the neighborhood, and 
lines 20-24 would select a new BGL. 

Figure 1 presents a cluster-tree with a root BGL 
(node 1) and two branch BGLs (nodes 5 and 6). 
Node's 6 BGL is node 1, but node 6 is also a BGL 
selected by node 2. Node 2 will only form an 
independent cluster-tree if a new node creates a 
stable link and selects him as BGL.  

The clustering algorithms' performance depends 
on the network stability. If a large percentage of the 
nodes are stable, the algorithm is able to detect them, 
and reduce their load by grouping them in clusters. 
If all nodes are unstable, beaconing only introduces 
overhead. A lower beacon period value tolerates 
higher nodes velocity. However, it increases the 
bandwidth overhead and the network collisions. It is 
better to reduce the clustering overhead and increase 
the flooding algorithm redundancy, to tolerate 
clustering inaccuracies. If conventional criteria were 
used, the clustering algorithm would create highly 
unstable clusters, which would include passing-by 
moving nodes, and would route query packets based 
on this error prone information.  

4 SEARCHING ALGORITHMS  

The searching algorithms were developed as an 
evolution of the basic source routing flooding 
algorithm (SR). In SR the lookup operation is started 
with a query message originated by a source node, 
which carries a unique identification (Qid), the 
source node address (nsource), a resource 
identification pattern to locate (Rid), and the path (P). 
This message is successively resent by each node, as 
long as it has not been received before and the hop 
limit is not reached. Each sender appends its 
identification to P. Nodes maintain a local table 
indexed by source node id, with last query' ids 



 

received. A hit message is sent to the source node 
when any local information satisfies the query. Hits 
are routed to the query's node source using the path 
included in the query message.  

This paper proposes 1.5-hop and 2.5-hop 
algorithms that enhance SR flooding phase, reducing 
its overhead, and the hit message routing, improving 
its resilience to node movement and failure. SR is 
modified in three ways: 

(a) The number of active nodes is reduced using 
the clustering node information. A node can be: a 
BGL if it receives a beacon selecting it; a non-BGL 
if it selects a BGL but is not selected a BGL; or 
isolated if it does not select a BGL. An unstable 
node with one or more stable nodes in its 
neighborhood selects for BGL the node with the 
highest µ value, strictly for flooding purposes. Two 
approaches are presented above; 

(b) Query message size is reduced by removing 
all non-BGLs and isolated nodes' ids before the last 
BGL from the path field (P). The partial path is 
stored and pruned, each time the message passes on 
a BGL. In case of node failure, the node can always 
use the BGL list (stored in the query message) to 
recover the route to the source node; 

(c) When hit messages follow the query reverse 
path, unicast is used and their sending is confirmed. 
When a link fails, the node looks at its neighbor list, 
and neighbor's BGL list, looking for any node on the 
reverse path. As a last resort, when no information is 
available, the node that detects the failure starts a hit 
message flooding. The hit message is treated as a 
special query packet, looking for a node id within 
the remaining query path list, which does not receive 
any reply. Hit flooding stops when the message 
reaches a node whose neighbor's (or the node itself) 
are part of the remaining path. Therefore, contrary to 
SR, the proposed algorithm is able to survive to 
extreme mobility, and is able to route hit messages 
over failed or moving nodes. 

 
A. 1.5-hop searching algorithm 
 
BGL and isolated nodes always broadcast 

queries one time (though isolated delay message 
transmission). A non-BGL delays the query sending 
for a fixed delay plus a jitter interval, and lists the 
visited BGL on a local variable. While the timer is 
active, the node continues to receive replicas of the 
query message resent by neighbors. It just extracts 
the query path list (P), and updates the visited BGL 
list with the node's address and the nodes's BGL 
address. When the timer goes off, the node checks to 
see if all its neighbors' BGLs and his own BGL are 
already listed. If they are not, then it resends the 
message to cover the missing BGLs. Otherwise, it 
drops the message.  

Since BGLs do not delay the message and 
isolated nodes do, search path goes preferentially 
over BGL nodes. For cluster-tree borders defined by 
non-BGLs, the timer's jitter limits the number of 
retransmissions that occur on dense networks. The 
faster non-BGL on an area transmits the query to the 
destination BGL (or non-BGL for BGLs separated 
by two non-BGLs), which retransmits it. The BGL is 
added to the visited BGL list of other non-BGLs on 
the same area suspending their transmissions.  

The algorithm improves SBA (Peng, 00) and 
ABC-QS (Choi, 02): It reduces the searching delay 
while crossing a connected set of stable nodes 
because BGLs never delay a query message; it 
reduces the message size (the number of BGL is 
lower than the number of nodes); it bases search 
paths preferentially over stable nodes, less likely to 
disappear; and it degrades more gracefully in the 
presence of transmission errors. It handles 
transmission errors similarly to SBA and ABC-QS: 
nodes keep sending a query message as long as a 
BGL does not appear on the path. Therefore, it only 
fails to reduce the load if none of the neighbor 
members of a BGL cluster retransmit the query 
message. This behavior improves the algorithm 
effectiveness for high network loads (due to the 
higher collision rate) and for high mobility 
conditions.  

The algorithm does not guarantee total coverage 
on unstable networks, because it does not take into 
account unstable nodes in the neighborhood that did 
not yet transmit a beacon.  

 
B. 2.5-hop searching algorithm 
 
A second searching algorithm was developed as 

an extension of the 2.5-hop algorithm proposed in 
(Wu, 03).  

A clustering algorithm modification is needed to 
support 2.5-hop searching algorithms: the neighbor's 
BGL list is added to the beacon message. The 
original 2.5-hop clustering algorithms (Wu, 03) sent 
the entire list of neighbors on the beacon producing 
more overhead. 

On this algorithm, a node has information about 
all BGLs and isolated nodes within 2-hop distance. 
In order to reduce bandwidth usage, each sending 
node puts in the query message the list of non-BGL 
nodes at 1-hop distance (v) that must resend the 
message. The message is sent by the query starting 
node; by each BGL visited and isolated nodes; and 
by the non-BGL nodes that are in list v. List v is 
constructed from the set of 1 hop neighbors, and 
includes the non-BGLs required to cover all 2-hop 
distance BGLs. The algorithm: 1) first adds the 
neighbor nodes with unique paths to a BGL; 2) then, 
adds the neighbors that cover the maximum number 



 

of BGLs not yet in the list. A minimum node 
identification criterion was used to select from nodes 
with similar number of BGLs accessible. 

The algorithm is more sensible to errors in the 
clustering information than the 1.5-hop version, 
since it uses topology information received one 
beacon period ago to select on-demand the next hop 
for the query message flooding. It also has less 
redundancy to tolerate transmission and topology 
errors, because it floods queries on a minimum CDS.  

5 SIMULATIONS  

The proposed algorithms and the source routing 
algorithm were implemented on version 2.27 of ns-2 
platform (ns-2). The presented simulations compare 
the algorithms performance, using the same query 
generation and node movement patterns. In each 
simulation scenario 200 nodes are moving during 
1000 seconds on a 1000m x 1000m area according 
to the Generalized Random Waypoint mobility 
model. Five different mobility scenarios were 
defined to study the mobility behavior of each 
flooding technique. Node’s average speeds of 0m/s, 
1 m/s, 10m/s, 30 m/s and 40m/s were obtained using 
constant pause times of 1000, 150, 10, 9 and 5 
seconds, respectively. Each node has approximately 
100 meters of communication range using IEEE 
802.11b over the two-ray ground propagation model. 
The beaconing frequency of each node is 1 Hz. The 
clustering algorithm parameters 
transient_threshold and stability_threshold 
are one and five seconds, respectively. 

Ten thousands of different resources are 
randomly distributed on the network nodes. Three 
different behavior patterns were defined using the 
model presented in (Ge, 03). High, medium and low 
network load correspond, to 10927, 1125 and 267 
generated queries, respectively. Finally, all 
broadcasts are sent with a jitter value of 100 ms, and 
the 1.5-hop algorithm uses a delay of 700 ms for 
non-BGLs and isolated nodes. 

Figure 3 presents experimental results for the 
average BGL selection time for the fifteen 
combinations of speed and load, and for 1.5-hops 
and 2.5-hops neighborhood information. The 
selection time values not shown on the graph, for 
low and medium load and mobility zero were 
respectively 195 and 78 seconds for 1.5-hop and 118 
and 61 seconds for 2.5-hop algorithm. These results 
show that the BGL selection time is negatively 
influenced by the beacon size and the load, but the 
average speed is the dominant parameter. 

For zero mobility, all BGL changes resulted from 
having two successive beacon losses, producing a 

significant churn on the BG composition for heavy 
loads. Beacons are sent using multicast, and these 
results show how sensible multicast traffic is to 
collisions. The clustering algorithm stability could 
be improved for low mobility scenarios by tolerating 
more beacons losses. However, the algorithm's 
performance would degrade significantly for high 
average speed values. Notice that the algorithm also 
degrades for the 2.5-hops algorithm, due to the 
largest beacon length. 

Node movement introduces extra BGL re-
selections due to topology changes, which become 
the dominant factor for the two highest speeds. For 
node average speeds of 30 and 40 m/s the BGL 
persistent time converges for the minimum possible 
value (5 minus the selection tolerance of one). The 
percentage of nodes without a BGL also increased 
significantly, which means that on these scenarios 
the clustering is almost turned off.  
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Fig. 3.  Average BGL selection time versus node average 
speed for 1.5-hop and 2.5-hop algorithm. 

Figure 4 presents the percentage of successful 
queries for two extreme mobility scenarios of 1 m/s 
and 40 m/s, where 1.5-hop, 2.5-hop and source 
routing algorithms are compared using the medium 
load. It shows that the 1.5-hop searching algorithm 
outperforms the other two algorithms on both 
scenarios. It also shows that the pure source routing 
algorithm performance is poor for both scenarios. 
The main factor that penalizes source routing 
algorithm is the dependence on a single reverse path 
to route the hit packet. Source routing performance 
for 1 m/s is conditioned by the higher number of 
nodes disseminating query messages and the longest 
query message (it carries the complete path), which 
lead to more packet collisions, destroying query 
messages and hit messages. For the highest speed, 
the success probability drops to 2% is result of a 
high probability of return path failure. 
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Fig. 4.  % Successful queries, load and end-to-end delay 
versus algorithm and node speed for medium load. 

 
2.5-algorithm has a higher beacon overhead, 

which penalizes the bandwidth load. It is also 
sensible to packet loss during the query message 
dissemination due to using a minimum CDS. A node 
movement or a packet loss may produce a query 
coverage shedding, reducing the successes rate for 
higher speeds.  

The 1.5-hop algorithm has the lowest load levels 
and is more tolerant to network changes, presenting 
a low degradation on the successful query rate. On 
the other hand, it increases the end-to-end search 
delay. Notice that due to the clustering reduced 
efficiency for high mobility, the 1.5-hop algorithm 
load increases, tending for SBA model for extreme 
mobility scenarios. This characteristic limits the 
network scale and to the network load supported by 
the algorithm for very high node average speeds. 

6 CONCLUSIONS 

The results presented in this paper show that the 
proposed 1.5-hop searching protocol has a strong 
resilience to network load and node movement, 
constituting a good choice for extreme mobility 
scenarios with low load levels. Its adaptability 
results from an adaptive clustering protocol, based 
on link stability, which adapts the controls the 
clustering granularity based on the network 
conditions. It reduces the cluster size and duration 
for extreme mobility scenarios increasing searching 
redundancy; it reduces redundancy for low mobility 
nodes, reducing the searching overhead.  

The obtained results show that for high mobility 
scenarios, performance improves for the algorithms 
that use the least possible network information (1.5-
hop). It is concluded that source routing approach 
fails for high mobility scenarios. Since most 
MANET routing protocols are based on source 
routing, this can present an important problem for 

common applications, not prepared to handle this 
kind of instability.  

This paper presents on-going work. Further 
study is being made on beacon overhead reduction 
and beacon self-stabilization algorithms, which 
reduce beacon collision effects. 
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