Open Distributed Processing, II (C-20)

J. de Meer, B. Mahr and S. Storp (Editors)

Elsevier Science B.V. (North-Holland) 247
© 1994 IFIP. All rights reserved.

A language for the specification of interactive and distributed
multimedia applications

Paulo F. Pinto® * and Peter F. Linington®
*Inesc, R. Alves Redol 9, 1000 Lisboa, Portugal, E-mail:pfp@inesc.pt

PComputing Laboratory, University of Kent, Canterbury CT2 7NF, UK,
E-mail:pfl@ukec.ac.uk

This paper describes a model for distributed multimedia applications and a speci-
fication language based on this model. The applications involve the composition and
synchronization of multimedia objects, and their interaction with the user and the en-
vironment. Objects are autonomous entities which have a behaviour, in terms of the
set of operations they offer to the environment; the mechanism for synchronization with
these objects is based on the communication of typed events. A single mechanism in-
tegrates user interaction with run-time control of the distributed system, allowing a
natural interplay between them.

The language specifies compositions by exploiting the concepts of the model. It
captures the characteristics of multimedia interactions using an adaptation of process
algebras, and includes a (procedural) functional part to define data structures and to
provide consistency checks.

The prototype system implemented consists of a compiler which translates the lan-
guage expressions into a state machine, and a central interpreter which orchestrates the
composition and synchronization of the distributed multimedia objects.
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1. INTRODUCTION

Multimedia data is now becoming common in distributed environments. Current
practice, however, has grown out of local solutions and is still quite hardware dependent.
Implementations generally consist of specific multimedia libraries linked directly with
the applications. What is needed is an integrated family of system components capable
of supporting distributed, multi-user designs.

Another issue is the choice of a suitable abstraction for multimedia data; a unique
abstraction will not solve all the problems of handling multimedia, because any single
abstraction will simply describe systems from a certain point of view.

*This research was partly sponsored by NATO and the EEC-ESPRIT research programme.
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An object oriented approach is attractive, but still has some limitations. Objects
are related to each other by class hierarchies, which are generally based on implemen-
tation concerns, and so provide a particular view. Some common themes in selecting
abstractions are [32]:

e application aspects (creating abstractions suitable for a set of applications. E.g.
an object which produces images for presentation as part of a document);

o device aspects (objects have a set of device control operations. E.g. objects with
operations such as Play, etc.);

o media type aspects (objects are organized by the properties or quality of the data.
E.g. a music object is a subtype of an audio object);

 communication aspects (highlighting the communication processes within the sys-
tem. E.g. objects to represent stored media during transfer).

Choosing a single one of these aspects would clearly solve certain classes of problem
but would obscure the analysis of others. Unification of the various aspects to give a
single carefully designed set of subtyping relations would generate systems which are
too fragile to support major enhancements to the class hierarchies — a situation which
is very undesirable when describing multimedia systems which are constantly evolving.

This paper proposes a model for the construction of distributed multimedia, appli-
cations. It is still not a complete solution, in that it concentrates on certain types of
application, but the approach taken is quite general; applications are defined as a set of
interacting multimedia objects, so that objects influence each other as the application
runs. A typical application would be the presentation of multimedia documents which
are specified as the composition of several basic objects.

In selecting abstractions to support the integration of multimedia components, the
model takes a multi-faceted approach. Objects are not simply related to each other,
by a single aspect, but can participate in various views of the system and each view
has its own composition rules and subtyping relations. These relations are recorded
independently of the objects concerned by a system-level Type Manager. This maintains
a profile for each object, defining its relevance in each view. Any checks on the object
(consistency, etc.) can be performed by system entities (compiler, network manager),
without reference to the object itself and independently of the programming language
in use. The type manager maintains a number of separate type systems expressing the
fact that

e object functions are accessed by a typed interface expressed in terms of operations
(such as Create, Play, or more application oriented operations like Zoom, etc.);

e objects have a behaviour; they are active, typed, entities, which can provide typed
events (sequentially or in parallel) to the environment.

° an object can produce its multimedia signal using various different transfer syn-
taxes (PCM audio with 8 bit samples, PCM audio with 16 bit samples, etc);
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The second contribution of this paper is in the way multimedia behaviour is specified,
or programmed. A language, based on LOTOS [4] [14], has been defined to express the
flows and types of information. It is strongly typed, in all the available views, and so
consistency checks can be performed at compile time.

First, the necessary multimedia composition operators are considered: temporal, s-
patial, general purpose, etc. Next, a suitable structural framework for the individual
composition relations is chosen, examining hierarchies, graphs, networks, reference lines,
etc. Finally, a powerful way of describing the relations for constructing applications is
built from the previous facilities.

"This paper reviews related work in the area, and then describes the model and the
language. It outlines an implementation of the system and draws conclusions. The im-
plementation assumes the Open Distributed Processing computational model as a basis,
using object invocations for both data and control communication. This functionality
was provided in the prototype by the ISA/ANSA [1] [2] ANSAware system.

2. RELATIONS BETWEEN OBJECTS AND DESCRIPTION TECHNIQUES

Early multimedia systems [33] [8] [27] defined composition mainly at a spatial lev-
el. They used hierarchical structures to compose documents and there was no explicit
language to describe the placement of the various objects. The placement was per-
formed by completely integrated tools (formatters, editors, etc.) sharing a common
notation. On the other hand, temporal dependencies between objects were included in
a non-integrated way. These objects were activated explicitly (by user buttons) and
the synchronization performed only at the beginning and at the end of the object. MI-
NOS [8] presented some further mechanisms for synchronization, defining composed
data types which provided predefined compositions of basic types.

Hierarchical structures are widely used because they provide simple descriptions,
which are easy to handle, and can be related directly to the process of stepwise compo-
sition or refinement. It was thus natural that these kind of structures should be adopted
to describe temporal synchronization [28] [23]. Nodes in the tree are either basic ob jects
or denote some relation between descendents. Typical relations are sequential and par-
allel presentation of descendents. Hierarchical structures, however, have some serious
limitations. Firstly, the node is the atomic unit of synchronization and if intra-object
relations are needed the object must be divided into components. This destroys the
concept of a single abstraction for the object and prevents it from being used in other
contexts with different styles of synchronization. Secondly, the hierarchy describes the
composition from a certain viewpoint (a document with chapters, sections, etc.). When
other kinds of description are desirable, such as a picture being displayed while there
1s text referring to it, the hierarchical description will have to be made using another
viewpoint.

The new problems that temporal objects introduce, both in terms of new styles of
composition and in terms of new application structures to handle them, has lead to
a number of proposals. Unfortunately, almost all of them restricted composition to
temporal synchronization, making the interplay with other relevant aspects of a system
difficult (consider management of bandwidth of connections, user interaction, relations
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with static data, etc.). Two main approaches to temporal synchronization are [3] the
reference line and reference points.

Synchronization based on a reference line [7] [11] [9] is a better approach than
the use of hierarchical structures. It works by independently attaching all objects to a
time line. Positive aspect are the lack of a fixed structure for relating objects, making
it easier to keep a single abstraction for each one, and to reuse objects in different
applications. However, the approach has limitations in situations where changes are
made to the predefined scheduling. Actions, such as Pause, or SlowDown, are either
performed within one object, leading to inconsistency of the composition, or on the
interpretation of the reference line, affecting all active objects simultaneously. There
is nothing in between. Because of this, solutions based on a time line are weak when
modeling non-determinism. It is difficult, for example, to specify user intervention that
might happen, or to model implementation delays or delays due to the distribution, or
from user intervention changing the duration of an object.

Synchronization schemes based on reference points produce systems which solve
all these limitations. In this approach objects generate control events which are related
in some way to the multimedia signal they produce [16] [24] [30]. A specification of
synchronization will relate the various events in a causal way. This approach still allows
for modifications of objects to take place after the synchronization specification has
been written.

Events provide a versatile system which can be used to integrate types of composition
other than just temporal synchronization. If all synchronization activity is represented
as events, multimedia applications become just special cases of concurrent programs.

However, synchronization based on reference points assumes that the ob jects generate
events in a consistent way. Where necessary, objects must be constrained to generate
certain series of events in their proper sequence. The solution is to have a language
(and a supporting framework) which specifies the constraints and allows the checking
and correction of any inconsistencies.

The choice of a suitable notation for the specification of object composition is
another important issue. The notation must be able to express the various composi-
tions easily. Some proposals already exist in the literature. In Muse [11], composition
was considered in a general form, and not limited to the temporal aspect. It was rec-
ognized that there should be different ways to describe it: graphs and networks are
used for coarse-grain and static composition; editors of reference lines express fine-grain
synchronization; and bindings express relations between entities. All the structures are
grouped together in a data model; however, they still form fairly disjoints sets.

The other proposals focus on temporal composition. They use formal, or quasi-formal,
notations which can be parsed, or interpreted, by a scheduling manager. Although these
notations are suitable for the restricted problem of intermedia timing, they are also used
1n other contexts with less success, such as in specifying user intervention and describing
distribution.

One example is [20] which uses a Petri net based OCPN model to specify dependencies
of intervals. It is suitable to program low-level synchronization but it lacks structuring
support to solve more context-dependent synchronization: the aggregation concept for
a Petri net is hard to visualize; it is difficult to associate type information with a set
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of nodes in the net (indicating, for example, that the type is video); it is also difficult
to model user intervention that is possible, but not necessary, in certain intervals; and
it does not support evolution of objects or time coercion facilities. In [21] a second
notation (hierarchical) is used for spatial composition. The use of a second notation
demonstrates the difficulty of specifying compositions other than temporal compositions
using only one notation (or data model).

Another example is [12] where path expressions are used to describe synchronization
of objects. This proposal is presented as an extension to the hierarchical document
architecture, ODA [5] [13]. Path expressions can be seen as equivalent to Petri nets
under certain conditions [19] and this approach shares the same drawbacks as the one
listed above.

A different approach is the use of process algebras [10] [22] to describe compositions.
Their suitability for the specification problem is assessed further below, but one use
has already been reported in [30]. It uses a synchronous language, Esterel, to describe
temporal synchronization between objects, based on events. The synchronous nature
of the language also makes it suitable for low-level synchronization, producing clearer
specifications than the Petri nets or path expressions because of the greater expressive
power of the algebra. However, there are some limitations if a higher level description
of the application is wanted, involving aspects other than just synchronization: com-
munication between objects, more complex relations between parts of the objects than
causality of time events, and specification of user intervention. The main limitations are
inherent in the language used: the non-existence of an abstract data type component,
particularly important for multimedia; and the difficulty of generalizing the operators
and signals (events) to arbitrary types of interaction and data.

The use of process algebras enhanced with an abstract data type component, as
in LOTOS, and with modifications where relevant to suit the needs of multimedia
applications, avoids most of these limitations and provides a powerful framework to
describe interactions at a higher level.

3. SUPPORT FOR DISTRIBUTED MULTIMEDIA APPLICATIONS

The modeling approach taken here to provide support for Distributed Multimedia
Applications was to define an integrated system comprising a model, a language and
tools[29]. Figure 1 illustrates the approach.

® The model contains (i) in the information viewpoint, an application level con-
cerned with the definition of the various concepts, the components to implement
them, and the way they interconnect; (ii) in the computational viewpoint, the
invocation mechanism, the concurrency support, etc; and (iii) in the engineering
viewpoint, the communication mechanisms used.

 The language reflects the capabilities of the model and conceptually can be divided
into a configuration part with the definition of the elements and their configura-
tion, and a specification (or programming) part which uses process algebra to
describe the compositions. This specification part is expressed in terms of the
concepts of the model and the configuration part makes the bridge between these
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concepts and the engineering objects that will implement them.

o The tools part of the system is a particular implementation of the model/language
using a particular technology. It includes compilers, run-time managers, editors,
etc. The prototype implementation used a basic run-time system, a compiler, a
run-time interpreter, editors, producers and consumers of multimedia data.

4. THE MODEL

Most of the novel features of the model are in the application level. An object-based
methodology was used for the description of the application because the types and
processes of the language can straightforwardly be considered as objects and because
encapsulation gives independence of the internal representations of the objects. The
basic entity, a multimedia object, is half way between a data type view and a process
view of information.

Definition: A multimedia object is an active entity that conforms to a
certain behaviour and may produce a medium-specific stream. The be-
haviour is represented by the events the object can generate and the opera-
tions it offers at its interface. The stream is characterized by a model of the
medium (the signal), including the properties which control its transmission
and presentation.

There is, in practice, an engineering sequence which breaks up the continuous nature
of a multimedia signal (into bits, pages, frames, bars in a chart, cars passing by, etc.).
A single abstract medium is capable of a virtually unlimited range of representations.
Synchronization between objects is performed by events which can be associated with
any of the possible representational sequences, providing a media-independent way of _
temporal labelling. The mapping between the sequence and the events is then a private
matter for the object.

MM_Object — the producer

The computational concept associated with multimedia ob ject is called an MM_Object.
An MM Object can produce (display) one or more multimedia ob jects, which are in-
stances of its type. An MM_Object can be seen as composed of zero or more end
components (Sources and Sinks) and a manager (see figure 2).

MM_Objects encapsulate the flow of multimedia signals, providing a control view
of the distributed application. For instance a Tezt MM_Object generate text and can
send events which relate to pages, mouse clicks, ete. A video-conferencing object has
implicit synchronization of the various media and can produce events to trigger other
application components (for example, to request the sending out-of-band documents).
The specification is only concerned with stating the type of the signal flow and the
type of the control information. The MM_Objects is a useful abstraction because it
provides a single common way to work with any kind of multimedia data. Furthermore,
when associated with a dynamic type system and an automatic generator of interface
bindings the specification environment can work with a constantly evolving system of
multimedia components.
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Figure 1. Integrated model, language and tools Figure 2. Conceptual structure

of a MM_Object

Sources, Sinks and Convertors — Building Blocks

All MM_Object features are provided in a less media-independent form by specifying
sources and sinks. Sources and sinks also have public interfaces which follow a common
style [26] but their details are specific to the media types (for example, particular type
of events are generated by the sink). They represent multimedia objects in an open
distributed environment and can be used either via the concept of an MM_Ob ject (as
proposed here), or independently. Sources can be connected to sinks (using a network
connection if necessary) either directly, if their transfer types are compatible, or via
convertors which make them so. Transfer types define not only the representation
media but also the way control over the transmission of the data is performed. This
control can use a private communication mechanism or it can use events, making it
suitable for inter-object synchronization.

Event — the interaction element

Typed events are the basic elements of interaction. Forcing events to be typed sim-
plifies the writing of applications by creating windows of visibility over an otherwise
flat event space, while at the same time helping to check the correctness of the system.
Events (and their types) can fall into three different categories: object annotations, us-
er intervention, or those generated by the platform, including exception handling. The
integration of all these categories provides a versatile system, where all the properties
which can be used for synchronization are treated in the same way. A property is some
basis for synchronization; that is, it is anything that can be relevant to other objects.
Examples are the rate of presentation of an object, the geometry of a window, the band-
width of a network connection. In practical terms a property can be anything the object
creator wants. Alternatives to this solution can be based on the attachment of some
behaviour to the data types. For instance, in [31] and [3], exceptions are integrated into
the presentation modes, thus using a limited number of built-in behaviours.
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Figure 3 shows the various major event types that an object can send. Annotations
are markers in the stream which were added with the help of special medium editors.
The specification selects which of the defined events it wants to be visible.

One important category of events is called ev_structural and is used to subdivide an
object, identifying internal time ranges. These ranges are not intrinsic to the ob jects
and are only syntactic concepts in the language used for synchronization. ev_structural
events are ordinary annotation events which are given a special status by a particular
specification (figure 3 shows four ranges).

Only two events are required in all ob jects: the initial and final ev_structural ones
— Ev_Stert and Ev_End. This weak minimum requirement allows for the integration of
objects that are not especially annotated for detailed synchronization. The source (or
sink) can produce the Ev_Start and Ev_End events without any need to change the data
signal. Interaction with such objects is, of course, relatively poor. A similar requirement
for different levels of participation of the components was also reported in [17].

Policy — way of interaction

A model based simply on the ordering of events is still a poor basis for the expression
of composition. It would be better to be able to relate two ob jects (or ranges) in time,
and still be able to say that changes in one particular property in one object should be
noticed by the other. A variety of modes of composition may be needed, independent
of the object types. Consider, for instance, changes in the presentation rate for a
composition of video and audio streams; one mode might always notify changes to the
other object; another mode might only notify about Pause or Stop commands, and
never for Slow_motion commands (since audio would become incomprehensible); etc.

Policy represents what an interaction based on a certain event type really does. In
other words, policies and events dissociate functional interaction from communication
mechanism. On the other hand, decoupling policies from MM_Object types makes new
objects easier to create because they just have to implement the interface, and not all
the interactions that they can possibly engage in. It also allows for different types of
interactions with the same ob ject.

5. THE LANGUAGE

The language has a process algebra component and a configuration one. The config-
uration contains the definitions of the MM_Ob Jects, the definitions of the data sorts to
be used in the calculus (int, char, etc) and the configuration of the connections. The
association of MM_Objects (or ranges) with processes in the algebra provides a struc-
turing schema to hold type information; this is a feature not seen in approaches using
less structured formalisms such as Petri Nets [20] or path expressions [12].

The configuration part was designed specifically to meet the needs of the problem.
The process algebra part was based on LOTOS, but modifications were made to ex-
press the specific multimedia interactions and to make the expressions clearer and more
concise. The major points of modification are:

° In the original language, operators define concurrency and communication in terms
of events. In the modified version, the types of events are taken into consideration
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(forming disjoint sorts), restricting the meaning of some operators. It is possible
to relate two processes solely in terms of presentation rate changes, geometry
changes, etc.

e Operators are also overloaded with some behaviour, and do not only represent
synchronization, so that policy actions can be associated with the arrival of events.
This is an effective shorthand to avoid writing the specification of policies explicitly
using events.

e There is a distinction between events that will always happen and events that
might happen. Modal expressions were defined to express this last kind of events.
These expressions are only enabled when the MM_Object (or a range) with which
they are associated is active. They create “regions” in time to allow certain
actions. They can model optional user intervention.

The language is able to express compositions using three different paradigms, uniting
them all in the same data model.

o Intervals — in this paradigm, multimedia objects are seen as intervals between
which relations are established. This is the main view and MM_Objects are used
both as data types with operations which can be referenced from the calculus, and
as processes engaging in events.

e Pointers — this paradigm allows for the identification of points during the pre-
sentation of an object and then a reference (jump) to them from any point in
the specification (If some other objects are active at that point they must be
repositioned).

e Scripts — with this paradigm user code can be referenced from the specification.
This is useful not only to express composition but also to add some special be-
haviour to an object. The integration is at the level of events, and the script is
effectively a specification of an event handler (which may be either interpreted or
compiled as an implementation choice).

A complete description of a multimedia interaction is called a specification. A simplified
form of its structure is shown in figure 4 (the missing parts are process definition, which
are similar to specification definitions, but provide a scoping feature, and the definition
of local names as shorthands for operators. A full description is given in [25]):

A specification has a name, can be stored in a library and can be referenced from
another specification. When referenced, it is used in a similar way to any other M-
M_Object, including the selection of events to be made visible. All the internal events
which can be used for external synchronization are listed in the event list. The param-
eter list is used to write parametric specifications. It can contain variables to pass data
sorts, events or objects. The inclusion of events and objects allows for the creation of
generic specifications that will synchronize internally with different objects. The func-
tionality is used, as in LOTOS, both to express behaviour and for value passing, if the
process terminates. Acceptable terminations are noezit, exit and ezit (1., ..., tn ), with
t; being data sorts or event types.
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Figure 3. Different types of events Figure 4. Structure of the language

5.1. Configuration Part

The configuration part contains statements defining the MM_Object and other spec-
ifications used in the application (see figure 5).

Any ranges defined are identified together with the delimiting events. MM_Objects
belong to types and share type property data (geometry of windows, volume of sound,
etc.) which is stored in the system-level Type Manager. These values can be overridden
in the definition statement.

The configuration part also contains statements identifying sources, sinks and con-
vertors. Property data can be used to identify the component fully if the name alone
is not enough (this is used for trading purposes, for instance). Convertors are devices
which convert one type of data transfer stream to another type. They are placed in the
circuit between a source and a sink using the information given in the link command.

5.2. Specification Part

This section contains a brief informal explanation of the meaning of each of the
operators. A transition semantics was used to describe them in a more formal way [25].

Figure 6 lists the operators of the language. It contains both the traditional pro-
cess algebra name (used to explain the semantics) and the keywords recognized by the
compiler.

The main purpose of the operators is to express the relation between two (or more)
intervals, and at the same time specify how each of the objects involved can influence
the others. Intervals can be defined by MM _Objects or ranges.

The interleave operator, for instance, describes a parallel and independent situation.
It states that the operands will run in parallel without any cross-influence, and the aggre-
gated process finishes only when all the operands finish. (A_rangel||| object)> A_range2
means that object and range! are played together, and only when both finish can the
second range of A be played.

The parallel operator is similar to the interleave operator, but the operands can
influence each other in some respects. In fact, this operator is a generator of operators.
The syntax is B1 | [to,po] ... [tn,Pn]) | B2 and it means that the events belonging to
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Figure 5. Declarations in the object
definition part

Figure 6. Type of expressions of the language

the types i, ..., ¢, will be exchanged between Bl and B2 according to the policies py,
-+, Pn, a8 was explained earlier. As the event types and policies are user defined, the
parallel operator can relate objects in terms of virtually any kind of properties.

The disabling operator in LOTOS is useful to model exception handling, by stating
conditions that, when met, will interrupt and terminate a process. In the current
proposal exception handling uses the event mechanism, and the interruption features
of the LOTOS disabling operator were adapted to provide some priority between the
objects. It is used to model premature terminations of objects. For example, a video
film clip associated with a page should be terminated when the reader turns the page
over. The semantics of the operator states that the interrupting action will terminate
all the objects in the current process except any object that is still referenced in the
interrupting process. In this way the video film can last several pages while other
objects do not. If the interruptable process terminates successfully, the interrupting
process follows it in sequence.

The action prefix, and sequential composition operators are used to describe
causal precedences based on reference points, in a more straightforward way.

5.2.1. Structure

Figure 4 shows that the specification part is composed of a main behavioural expres-
sion and possibly some modal ezpressions. This separation of behaviour expressions was
defined to simplify the writing of compilers and to make the description more intuitive,

The main expression is essentially based on events of the ev_structural type, and states
how the application should evolve when there is minimal intervention from the user, or
from elsewhere. The expression can also have events of other deterministic types.

The modal ezpressions are each active during the interval in which their guard event
is defined. These expressions can also contain events of ev_structural type (except the
guard, of course). This can happen if an entire object is defined in the expression, as
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for instance, in situations where the action of a user clicking on some button causes
certain MM_Objects to be displayed. If some conditions are valid during the whole
of the application, the pre-defined MM_Object UI (user interface) can be used. UI is
always valid.

6. IMPLEMENTATION

A prototype system has been implemented to test some of the ideas of the model
and language. The nature of the concepts in the model and the formal semantics of
the language allow the control to be exercised in different ways. It can be centralized
in an orchestrating entity (the interpreter), distributed in every MM_Objects, or have
a mixed structure.

The current implementation uses a centralized orchestrator with some minor control
performed directly by the MM _Objects. The language is compiled into a state machine
and the orchestrator interprets this at run-time. State machines are the common choice
to implement process algebras because they are both described by transition systems
and a mapping algorithm can be defined to generate states from expressions [18] [6].
They also provide a powerful operational structure to manage the complexity of the
behaviour of parallel communicating processes expressed by the language.

The implementation included three MM_Objects which produced text, image and
active labels objects. In the case of the text object, rich text was expressed using
a markup notation and is formatted when the objects are activated, using run-time
information about the size of the page. This object has a simple structure and does not
shift the text to support spatial composition by leaving “blank” areas where overlays
can be placed. Provision of this feature would need a definition of a notation about
the type of spatial information that objects need to get at creation time. The image
object recognizes some image formats and uses a private coding to transport them. It
supports the definition of figures as inner regions in the original figure. It is also possible
to invoke transformation functions to be executed by the time the object is selected.

All objects are treated as continuous media; that is, they are created instantaneously
but the time to transport the data is not nil. This suits the paradigm of intervals in
the specification and also decouples data from control. Regardless of the time taken
to transport the data, the object is ready to interact at control level immediately after
creation (it can even be destroyed before all the data is shown). This is an advantage
when the amount of data is significant, as in an image, for instance. In the case of the
text object, the text is understood as a sequence of pages displayed with a presentation
rate of zero. Pages are turned over when instructed to do so by the controller.

MM _Objects are implemented by independent sources but all the sinks, although
independent, are integrated with the orchestrator. This integration allows the use of the
same window environment and consequently a better performance for input and output
related operations. The X-window system is used for user interaction and object display.
The various objects get their input directly and if any input is relevant for inter-object
synchronization, events are sent to other sources, sinks or orchestrator.

An MM_Object knows (or is told) exactly how to progress during the lifetime of the
object. The knowledge is taken from the specification. Most of the times there is a
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causal effect between all synchronization events and the actions are just the start of
new activities. When it is not the case, ie., an MM_Object has to wait for some event
to come and it will arrive late, the MM_Object acts accordingly to the specification,
possibly pausing the display of the signal.

The methods available on the MM _Objects are defined to support the necessary con-
trol of the application. Naturally, the compiler, the orchestrator and the MM _Objects
are all consistent with each other, and the translation of the language performed by the
compiler, depends on the interface of the MM_Objects. MM_Objects have a generic
set of methods with the basic operations: claim a device, select an object, play the
object, stop playing, etc. They also have a specific set of methods with media-specific
operations. These operations are not known to the compiler, and the Type Manager
is used to check their correctness. The current implementation uses a special event to
transport the operation name and parameters. A better solution would be the creation
of a stub invoker at run-time, but the Ansaware 4.0 did not support such facilities. The
use of the Type Manager allows the compiler to work with evolving systems.

This kind of approach should be compared to the work of MHEG [16]. MHEG defines
content and projector objects with instance data and manipulation functions. They
correspond respectively to encoding and presentation functions. The philosophy of the
work of the expert group is to define fully all possible multimedia objects, instead of
creating crucial objects and letting the world be built around them by using subtyping
relations. A noteworthy point in MHEG is the strong distinction between input and
output objects. When interactions need both input and output (the most common case)
they have to be performed by composite objects (called interactive objects) which have
a heavy structure.

7. AN EXAMPLE

Figure 7 shows a working example of a multimedia document. Both the text and
the image objects have sensitive areas of two kinds: one addressed at specification level
and another that it is not. The behaviour of the object when these areas are pressed
is different. In the first case, the object sends an event which has been registered
beforehand, while in the second there are only internal actions, which are not used in
inter-object synchronization.

This example assumes a user control panel in the application with buttons that send
events on behalf of the U] MM_Object. Another assumption is that the application
starts up, creates all the necessary objects, and then the interpreter blocks waiting for
an indication to start interpreting the state machine structure.

In the example, everything is then blocked waiting for an indication from the user.
Eventually the button UILStart is pressed. When the event arrives the object Book!
starts by displaying its first page. When the user turns over the first page?® the event P1
arrives and the map object (which is an image) is displayed. The presentation stays like
this until the user turns over the second page. At that moment the map is terminated
and the third page is presented, together with a label.

The PARALLEL operator was defined as being a parallel composition in which the

*It is a logical page, so it can be a part of a physical page.
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MMObject Paged_Text  Bookl  with SubSStructure
Second_Portion "P2 Pp3"
Third_Portion "P3 Ev_End"
Data$ld  "textmxt” First§Page "q" Last$Page ngqr

Geom$X "0Q" Geom$Y "Q" Geom§Height "600" Geom$Width"500" ,
MMObject Image Map with DataSld  “image/f22454"

Ge0m$x "30" GeomSY "381" GcomSHelghl 20" Geom$Widlh"400";
MMObject HS_click_die Label with Label "A Label”

Geom$X "430"  Geom$Y "51" Geom$Height "30" Geom$Width"60" ;
Source  PgdTxiSrc Sourcel ; Sink PgdTxtSnk Sinkl ;
Source  ImageSrc Source2 ; Sink ImageSnk Sink2 ;
Source SimpleHS_Src Source3 Sink HS_ClickDieSnk Sink3 3

Link  (Bookl, Sourcel, Sinkl )
Link  (Map, Source2, Sink2 )%
Link  (Label, Source3, Sink3 )i
DEFINE PARALLEL | [ev_geometry, pol_inform] |
behaviour
UI 7#U1_Start THEN Bookl ! #£v_Start THEN Bookl ? #P1 THEN map INTERRUPTED
(Second_Portion PARALLEL labe) THEN Last Portion THEN EXIT ;

AND (
UL ?#UI_Abort THEN ABORT ;
OR
)A = (map ? x : ev_geometry THEN Bookl !x ; A);
L_endspec

Figure 7. Example of a specification

synchronization gate is the geometry of the objects. The policy Inform sends all changes
in the geometry of one operand to the other operand.

The label object belongs to a type that has the following behaviour: when it is clicked
it sends an event and terminates. The parallel composition finishes when the label
finishes and the user turns over this page. When both happen, the fourth page is
displayed, and when this finishes (ie. the user turns it over) the application stops.

This example only contains ob Jjects which are static in time. During their presentation
the user can make alterations to the geometry by means of a geometry panel provided
for that purpose (the window manager facilities were used). There is one such panel
with each visual object. If the ob jects were not static, such as, for example, audio and
video, rate panels would also be provided to enable the corresponding parameters to
be changed.

The last part of the specification is the modal part. The first expression states the
fact that the user can abort the program at any instant by pressing the button UI Abort.
The second statement says that all events of type ev_geometry which are sent from the
map should go to the object Book!.




261

8. CONCLUSIONS AND FURTHER DIRECTIONS

A first conclusion of this work is that there is clearly the need for abstractions which
can handle the diversity of functions that multimedia objects have. These include ab-
stractions at an authoring level, demanding only the necessary amount of information
to express actual interaction, and abstractions at engineering level to support facil-
ities offered all the way through to the communication technology. The nature of the
interactions and the nature of the functions performed depend on the level where the
abstractions are made. As was noted before, there is no unique solution to the entire
problem of handling multimedia data.

The choices made here, however, seemed to cover a wide range of uses. At the
authoring level, the definition of event types to categorize the output of objects in
terms of control, unifying time, contextual information, user code, etc., seems versatile
enough and reduces the hard-wired knowledge that elements have of each other (such
as awareness that a certain feature happens 27 seconds after the start of a video clip).
The integration of these events into a general communication mechanism opens up
interaction with any entity in the system.

At the engineering level, the event selection mechanism, consisting of the registration
of interest in types of events, seems general enough to support synchronized behaviour
of objects in distributed environments.

In language terms, the concurrency of the algebra makes specifications very simple to
read and write. The type of language also provides a property based description rather
than a causal one. For instance, the specification of the existence of an event which can
happen during a certain interval is straightforward (this is a common situation when
modeling user interface). The handling of time becomes quite easy with the concept
of process and the way interactions are specified. Intervals are a good abstraction
for continuous media and the algebra provides a consistent treatment of actions when
objects cease to exist. This should be compared with other approaches, such as the path
for event delivery in Hypercard, for instance, which is statically defined and changes
suddenly when objects terminate. In Hypercard, this kind of synchronization can only
be achieved with events defined at a global level (not in the individual scripts).

The integration of MM _Objects with a dynamic system-level Type Model, is very
useful in incorporating specific behaviour into objects, and in allowing for extensions
when new versions are created.

Finally, a formal basis for the language proved crucial in building a coherent system.
It helped to establish the essential mechanisms clearly, and could form the semantic basis
of more user-friendly authoring tools. Graphical interfaces should be considered, but it
is important that the various relations are defined in a precise way. One possibility is
the use of an adaptation of the formal extension to LOTOS, G-LOTOS [15]. However,
pure process algebras do not provide the best authoring environment for specifying
some types of multimedia document. It is rather difficult to express additional kinds
of information such as spatial dependencies between objects. In this work, the problem
was avolded by deriving spatial precedence, of the windows, from the ordering of the
operands. The geometry events of the X system were intercepted at application level
and integrated in the event mechanism.
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Although the main concepts were defined and the implementation proved they are
consistent, some clarifications and improvements are still needed. Some of them overlap
with the current work on ODP.

e (i) the interface of MM_Objects must be completed to represent a true open
multimedia object in a distributed environment. Sources and sinks will have to
be changed accordingly;

o (ii) ODP already uses the modeling technique of subtyping extensively with
various meanings: conformance of interfaces in the trader, invocation mechanism
during binding and in the computational model, etc. Multimedia applications
require such techniques. To make it really usable in a distributed system (by
compilers, network managers, etc.) an independent way to store and access type
information, and manage the many different meanings bound to subtyping should
be defined. Consequently, there is already a strong requirement to have a Type
Manager service in ODP;

o (iii) concurrency. For the particular case of a specification written in a concur-
rent language, the direct use of concurrent primitives in a distributed system could
be advantageous. These kinds of primitive are still in a very preliminary stage in
the current distributed architectures and should be clarified in the ODP work. (1]
proposes path expressions to control concurrency but this is not yet implemented
in Ansaware;

° (iv) multimedia access point, MAP. A clear definition of MAPs is another
issue — MAPs are generalizations of the session access points, such as plugs and
sockets in ANSAware, to support multimedia streams. This paper has discussed a
model which abstracts away from the engineering detail, and there was no strong
requirement to define such access points. However, MAPs would require transport
mechanisms more suited to bulk data transfer, with various quality of services,
than the current operation invocation in the QDP computational model.
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