Scalable Service Deployment using Mobile Agents
LuisBernardo and Paulo Pinto
IST - Ingtituto Superior Témico, Lisboa Portugal
Inesc, R. AlvesRedol, 9 P-1000 Lisboa Portugal
Phore: +351.1.3100345 Fax: +351.1.3145843
{Iflb,paulo.pinto} @inesc.pt

Abstract. Very large networks with thousands of applications and millions of
users pose serious problems to the aurrent traditional tednology. Moreover, if
synchronised client behaviour exists then the limitations are strongly felt. Mo-
bile ayent systems can be asuitable technology to answer to these requirements
if some agpeds of the achitedure ae caefully designed. This paper proposes a
co-operative mobhile ggent system with a very dynamic and scdable trading
service The system all ows applicaions to deploy servers onto the network to
respond to demand making them self-configurable. Clients can also use mobile
agents with performance gains. Sets of simulations were performed to study the
scdahility of the overall system.

1 Introduction

In the arrent information technology era aly new serviceinvolves a larger number of
end wsers. Very soon retworks with milli ons of users and thousands of applications
will be & work. Despite of the size, which can by itself creae operational problems,
applications might produce synchronised peaks of traffic due to externa events (e.g.
lotto draws, sport brokering and interadive TV contests). These pe&s can drive parts
of the network to a halt if not properly handed. A scdable gplicaion implementa
tion must adapt to the intensity and relative distribution of the dient load using a
dynamic set of servers.

A gatic goproach to the problem, using a fixed number of servers and conventional
traders, would lead to inefficient resource usage solutions: either the number of serv-
ersisinsufficient (during peaks of the load) or there is an over-dimensioning d the
servers deployed. A scdable world-wide gplicaion implementation should also
cover two other aspeds: servers must be ale to run on an open world-wide set of
platforms (to set the maximum load limit as high as possble and to locdise interac
tions); and the server deployment and request binding should be tuneable (to alow
service spedfic optimisations). Most of the traditional scdable service implementa
tions rely on a closed set of servers (WWW cade servers [1], TP monitors [3], task
load balancing agorithms [9], smart clients [20], and ahers). Such systems rely on
system load-balancing servers or on a "head" applicaion server (which redireds the
requests to other servers), introducing paential bottlenedks. Additionally, the tech-
nology must efficiently suppat the dynamic deployment of new servers: Fadory
objeds and ORB implementation repositories [13] might be used, however they are
not optimised to ded with the dynamic credion of new types of servers. The required

semantic resulting from all these requirementsis met with the mobile agent paradigm:
It provides a simple way to deploy personalised services (replica aedion from an
initial service provider's server) and an open ulquitous platform where mobile
autonamous agents might run.

The solution proposed in this paper is based on a mobile agent system approach and
on rew scdable dgorithms for the trader (cdled here location service) and services.
Servers are implemented using mobile ayents, and can deploy new replicas when the
demand rises, or migrate towards the location d the majority of the dients. They use
the service dynamic topdogicd information from the locaion service the dient load,
and the overall situation of other pee servers, to control the deployment of new serv-
ers and adapt predsely to the dient load. Server agents are auitonomous on their con
trol over server deployment.

Our system asaumes a scenario where dients look for a predse service Clients use
the location service to resolve unique applicaion names to single server references.
The system does not suppart service discoveries based oncharaderistics (price avail -
ability, etc.). Each application server sets an areaof the network for its srviceto be
known (server domain). The locdion service takes into accourt its own load and
server domain sizes to change dynamicdly its configuration. As other services, the
locdion serviceisimplemented using mobile gyents.

The rest of this paper is organised as follows. Sedion 2 presents a system overview,
including the client implementation and location service Server deployment control
and inter-server synchronisation is discussed in sedion 3 Sedion 4 presents a study
of the dynamic behaviour of serversin faceof arising client demand. Sedion 5 de-
scribes related work and Sedion 6 concludes. This paper extends a previous one [4]
by examining thoroughly the mobile agent utili sation and by extending the dynamic
behaviour scdability analysis ([4] restricts its analysis to the server credion algo-
rithm).

2 System Overview

The network provides a ubiquitous platform of agent systems, in which any agent
(server or client) can run. Each agent system is tied to a locaion server (running lo-
cdly or on ancther nearby system), where dl the interfaces of the locd agents are
registered. Thislocaion server is conneded to athersto offer aglobal service

The proposed architedure does not conflict with the standardisation eff orts of OMG
[15], or some of the available mobile agent systems (Aglets [10], MOLE [19], Voy-
ager [12], etc). Mohile gyents are defined as autonomous ohjeds, which may commu-
nicate with ather objeds or agents through a variety of interfaces [2], and are able to
migrate or start agents on remote agent systems. The main dfferences are the locaion
servicerequirements.

When a dient seaches for an applicaion rame, the locdion service helps in the
binding process (the asciation to a server) direding it to the neaest server. If the

location server knows more than ore server, it will do splitting of client traffic. If it
knows that a new, and closer, server was creaed it will start using the new one, and
propagates this information. When a dient comes for resolution it will get the best
answer for that moment.

The balance between the number of clients, servers and locaion servers ads as a
general load balancing mechanism in the system. The number of applicdion servers
will vary with the number of adive dients, and the number and range of each locaion
server will vary with both the numbers of adive dients and the application servers.

2.1 Clients

Clients may interad with servers using Remote Procedure Calls (RPC) from their
locaion rodes (or other remote interadion mechanism), may migrate to the server's
agent system, or do both if, for instance, the first fails. Although not essential, mobil -
ity onthe dient side has advantages in terms of the overal traffic on the network: it
gets more asynchronous (lessdemanding in “pe&k” network usage), can support un-
stable conredions to mohile mmputers more easily, and could be tail ored to satisfy a
set of routing constrains acarding to a service spedfic dgorithm. Performance mod-
elsfor both approaches ([7], [19]) showed some of the combined RPC/client mobhility
performance alvantages when filtering large anounts of data or when performing
multiple interadions over low bandwidth links. However, client migration may aso
cause the overloading d the servers agent system. To avoid such effed, the dient
agent migration destiny is leded using the remote locaion server. Noticethat on the
system described here, the impad of variable network latency is lower than on the
referred models because of the server mobility, which reduces the “distance” between
clients and servers.

The system provides a simple way to integrate legacy system clients, which may
interad with server agents using RPC (for instance CORBA 110OP [13]).

2.2 Location Service

The locdion service is one of the mgjor players for scdability. It has two dfferent
roles: at the location server domain (the set of agent systems tied to a server), it must
provide detail ed locd information and balance requests among locd avail able servers
(for each service); at a global level, each locaion server must provide a scdable
global trading information service (although nd complete). The global load balancing
isbased on retwork proximity relations.

The necessty for fast updating during the credion of a server clone, the propagation
of frequent updates due to migration, and the dynamic nature of the information in
this grstem (based on dynamic server domains) introduce ahigh overhead which
invalidate some of current technica solutions based onstatic hierarchic systems (e.g.
DNS, X.500 a0 OMG Trading[14]). See[4] for detalils.

A scdable and highly mobil e system must have the foll owing charaderistics. Firstly,
the goplication rames must be flat ([18] readed a similar conclusion). Secondly, the

location seach path, which is now independent from the gplication name structure,
must be performed on a step-by-step basis, through a path of location servers where
ead ore contain routing information indexed by the gplication remes. Thirdly, the
load and charaderistics of the overall system shoud tune this dep-by-step path.

One important feaure is how the locaion service scdes to alarge population. We use
amixture of meshed and herarchic structure where location servers at ead hierarchi-
cd level interad with some of the others at that level and (possgbly) with one eove.
Higher hierarchic levels offer a broader but lessdetailed vision of the services avail -
able. The hierarchicd structure and the scope of the mesh change dynamicdly ac
cording to the load df the system, and to the size of the server domains.

The server domain is srvice spedfic. For instance a ca parking service would sim-
ply advertise on the surroundings of ead car park, while apopular lotto broker serv-
icewould advertise on a broader range (pricing schemes could be a deterrent to artifi-
cialy large domains). Clients control their seach range. Due to lack of depth, or
incomplete information, resolutions can fail, and a deeper seach must be tried.

3 Servers

Under the envisioned condtions, server development is a delicate task, becaise most
of the time there will be only a vague forewarn of how high the "peak” of the load
will be, or when it will happen. An adaptation algorithm is required, to achieve the
servicerequirements.

3.1 Server Deployment

Severa reasons can originate the deployment of a new server (or the migration of an
idle one). A new server can help solving problems related to: 1) insufficient process
ing resources (the overloading o the available servers); 2) insufficient bandwidth (by
providing a proxy server which compresses the data); or 3) the support of unstable
conredions (by providing a locd service proxy, which re-synchronises with the re-
maining servers after connedion re-establishment). The proposed algorithm is opti-
mised to ded with the first problem.

A goodmeasure of the quality of servicefor this g/stem isthe global service response
time to client requests. For ead application, this time must be confined within spe-
cific bounds. It includes: the time to resolve the appli cation rame to a server reference
(at the locaion service), plus a waiting time due to client load, plus a service time
dependent on the gplication (which depends on whether it is a single RPC or a ses-
sion, onthe overheads for distributed data consistency, etc.).

The aaptation algorithm aims at controlling the number of server agents deployed,
but also their locations and ead server domain, to ke the waiti ng time under control
due to client load. The most important parameter will be the number of servers. How-
ever, the others will i nfluence the relative distribution of clients, and the load induced

at the location servers. As clients are bourd to servers based on the distance, some
unbalancing can exist depending on the relative distribution of clients.

The aaptation algorithm proposed for overloaded servers in this paper is isolated.
|.e.,, eath server monitorsitslocd load to deted condtions which violate the applica
tion requirements (threshold values are used), and compil es the dients' origins. Any
server adivity measurement might be used. However, best results are adieved if the
load includes a measurement of the queued client requests waiting at the server.

If the load goes above atop threshold value, the server creaes and deploys a new
server. The replicalocaion is sleded amongst the most frequent sources of agents
(locd or not). The new replicawill start running after T, which isthetime to crede
a donre on the remote ayent system, plus the delays at the locaion service (disemi-
nation d the new clone's server reference). During this period, hew clients continue
to bind to an aready overloaded server. So, the triggering mechanism of the top
threshdd value is disabled for a duration dependent on T, . A simple load measure-
ment is the length of the waiting clients queue, where the disabled period is con
verted in an increment of the threshold value (proportiona to the dients processed by
anew server during its credion). In result, the replica aedion rate is controll ed by the
client request’s arrival rate.

If the demand is very high, a server might become crowed with baunded clients (and
the waiting time exceels largely the server resporse time). A redistribution of clients
must then take placeto spead up the dient's service total response time. The server
can unbind some of the dients, or can mutate itself (i.e., close the old interface and
crede afresh one). Thiswill force anew resolution phase for all waiting clients and a
redistribution of the dients for the avail able servers.

Dynamicdly creaed servers are destroyed using a market based control technique [6].
When a server’s load goes below a bottom threshold, it sends messages to the other
servers within a maximum range, requesting ore of them to take its place Requested
server’s answer with bid messages, stating if they can expand their domain and their
load. To speed up the overall system resporse, servers are not blocked for a “bid”
time. The resolution phase (load transfer phase) is adknowledged, and the load trans-
fer can be aborted if, for instance, the server had itsload increased in result of another
ending server and can na hand e the new clients. After aload transfer is accepted, the
locdion serviceis updated, and the originating server dies.

Compared to ather approaches based on scheduler objeds [3],[9] or inter-server syn-
chronisation [6], the use of an isolated algorithm during ovwerload conditions al ows a
faster resporse, and scadesto higher levels of client requests. However, it may cause a
temporary deployment of a higher number of servers, if for instance, the majority of
the origin of the dients moves to another region d the network. During a transition
phase, new servers are creaed whil e some of the previous ones die.

A complementary algorithm can be used during moderate overloaded conditions
(triggered by a lower second high threshdld value), or as a response to client maxi-
mum delay overrun reports. An example for this algorithm might be a market based

control technique that would search for a underused server, prior to creaing a new
one. The seleded server would migrate to the needed region, after delegating its pre-
vious srver domain.

The presented algorithms also apply to the locaion servers, with slight modifications.
Locaion servers may creae areplica and split alocaion damain to reduceits load, or
may join with another neighbour. The redistribution procedure dso applies to the
locdion servers. After a locaion server mutation, only agents inside the locaion
domain will be &le to read it. Remote dients using RPC which reed this locaion
server (even indiredly) will have to wait for interface information dssemination.

3.2 Service Implementation

The proposed system is nat restricted to applicaions which might be implemented
with parallel independent servers. It can aso be applied bah to systems with partia
nortmohility requirements (due to a static comporent or a huge amount of data), or to
applicdions with intra-server synchronisation requirements.

The system is flexible in terms of mohility requirements because esen applications
with nonmobile comporents might partialy use this sdable fedure. If their seman-
tics allow, several smaller interface @ents can be deployed in the system. They may
implement cades of information (e.g. HTTP [1],[5]), concentrators of client requests
or generic proxies (e.g. [8]), reducing the non-mobile wmporents' load.

Depending onthe nature of the service, servers might need extra spedfic synchroni-
sation logic to maintain consistency of shared data between the servers. The average
service time will increase with the number of servers. The dgorithm will only be
applicable when the processng cgpadty gain of a new server is higher than the aver-
age service degradation. It provides better results when servers can work autono-
mously or have low coherence requirements. An example of the latter kind is the
CODA distributed file system [11], where the mherence is implemented on limited
points on time, with little or amost no degradation of service time. For applicaions
where astronger coherence is needed, the improvements may also come from the
deployment of interface gents. The maximum intra-synchronisation rate will li mit
the maximum number of deployable servers, and the maximum client load supported.

4 Dynamic Behaviour

The analysis of the dynamic behaviour of the system was performed with a simulator,
developed using the Ptolemy [16] simulation system. The set of tests presented fo-
cuses on the study d the adaptation to a mnstant demand from clients, which origi-
nates srver overload. Applicaion servers run both the server creaion and server
destruction algorithms. The dfed of the location service was reduced by setting a
low-resolution time (compared to the application service time), and by disabling the
dynamic change of the hierarchy. Nevertheless it still runs the gplicaion rame dis-
tribution algorithm, which introduces a delay between the deployment of a new server

and the stabili sation d the location serviceinformation. The dfeds of the variation of
the latency on the communication between agents were not considered, by setting it to
a mnstant value. This very symmetricd scenario produces highly synchronised reac
tionsonservers, but it is clealy the worst case.

4.1 Simulation Environment

All tests were anducted with the network pre-
sented in figure 1 (132 agent systems and 19
static locdion servers). Results were olleded
a the end of ead measuring interval of 0.5
units of simulation time (0.5 tics). The duration
of ead simulation was 30 tics.

Fig. 1. Simulated meshed network

The simulation assumes an atomic interadion between clients and servers. A client is
born and lives until it can make an invocaion to the server. Our main results are the
client’slifetimes, which are the overall application response times.

The gplicaion and location service servers are modelled by a queue defined by a
service time probability function, T and T, respedively. For al the experiments re-
ported in this paper, T, and T, have deterministic functions with the values 0.001 and
0.1 ticsrespedively. The transmisson time was st to 0.0001 tics, and the clone crea
tiontimeto 1tic. Servers use the number of requests on the queue as aload measure-
ment to trigger the aedion of servers, and the average utili sation time (a weighted
average of measurements in 0.5 tic intervals) as a load measurement to trigger the
server destruction. The top threshold value was 15 clientsin queue, and the temporary
increment due to clone aedion was 15 clients (1.5 times T___ divided by T). The
bottom threshold value was 50% of the processng time. All the reported results were
obtained with the same dient redistribution procedure: clients waiting in the applica
tion server queue ae unbound if their waiting time exceeds a duration of 1.5 tics.
New clients were generated with a uniform distribution o the inter-server deployment
time onthe interval [0, 2/ClientLoad] over agroup of 125 nodes. ClientLoad defines
the average number of clients that entersinto the system during atime unit.

4.2 Time Evolution

Figure 2 shows the evolution over time of some averages during ead measuring
interval of: New Clients, the number of clients which entered the system; Unbinds, the
number of clients unbound duing the interval; Pending Clients, the number of clients
waiting on queues (of both application and locdion servers); Ending Clients, the
number of clients which died during the interval; and Processing Capacity, the maxi-
mum number of clients that the servers can process during the interval. The second
graphic shows the evolution of the average global response time per client measured
on ead interval, represented by TT (Total Time). The arves were measured with an
average (ClientLoad) of 250 clients per tic (125 per measuring interval) and five ini-
tial servers.

500 /\ ——New Clients 1;
400 16 IA"I
300 / \ —— Pending 1‘2‘ 11
/ \ Clients S |
200 X Processing 08 .}' ‘\
" B 06
100 0 et e e e] Capacity WLV “\
1 TN ——— Ending ol N
0+ w w w Clients 0 w :
0 Tsetup 10 _. 20 30 |——Unbinds ° * » ®
Time Time

Fig. 2. Service Response — evolution on time of the number of clients and of the total delay

As onas client requests gart (at tic 1), the number of pending clients grows until a
paint in time where the processng paver deployed is enough for the dient load, T_,,.
After that it startsto deaease. TT continues to grow just for a short while éter this
point (the curves are dmost equal because redistribution was used, as curve Unbinds
show). With the reduction of the number of pending clients, the number of servers
deaeases. However, the processng capadty is always above the new client rate due
to the 50% idle time dlowed for eat server (the minimum load threshold). It is clea

how the system gets dable with avery low and constant response time.

The time measurements used in the remaining sedions were: the average value of the
client lifetimes, TT,, and the time value that includes 95 percent of al client life-
times, TT95 (which gives a notion d how high the delay ped is). Additionally, the
“Processng Capadty Ratio” (ratio between the maximum number of clients that
servers can process and the number of clients entering the system) quantifies the
avail ability of processng resources to satisfy the dient demand. The variation d the
client waiting time depends on the value of the processng capadty ratio (PCR) and
on the distribution of clients per server. It gets higher when the PCR is below one and
gets lower otherwise (assuming a completely balanced system).

4.2 Resultswith Weak Inter-server Synchronisation

The dgorithm performance depends on a number of parameters and qotions, which
include: the dient redistribution procedure, the time to crede a d¢one, the top thresh-
old value, the timeout value (with partial client unkinding), the initial number of
servers, and the ClientLoad. The presented results focus on the scdability with
ClientLoad. A study on the dfed of some of the other parameters on the server crea
tionagorithm can befoundin [4].

The next set of experiments sudy the system response to different client loads (rang-
ing from 125 clients per tic to 8000 clients per tic), using two dfferent numbers for
theinitial servers (initial processng cgpadty of 10 and 50 clients per tic). Figures 3a,
3band 4 show the distribution d TT__, TT95 and PCR.

avg’

15 7 -
/ : -
1 5
:k_ H/{ ——5s Al -/ ——5s
05 ——— *’4/‘ —m—1s 2 \.\ /./ — —&—1s
0 . 1 T
100 1000 10000 100 1000 10000
ClientLoad ClientLoad
Fig.3a. TT,, Fig. 3b. TT95
2 The results $ow a minor variation of
18 I~ . | [=F®s the resporse times (TT95and TT,,) and
16 — N —=—PCR1s of PCR compared to the variation on
9 I ol I i ClientLoad (6400%), which prove the
. ‘ agorithm scdability. Theinitial number
100 1000 10000 of servers has a grea influence on the
Client.oad three parameters, except for the final
number of servers deployed (PCR).
Fig. 4. PCR Locaion servers (which support a

maximum of 1000 requests per tic)
influence negatively the system response for ClientLoad values above 1000. This
effed in spedally naticeale with a single starting server (but also for five starting
servers for 8000 clients per tic), where the overloading of the single initial application
server’s locaion server occurs. In result, the time to resolve the gplicaion names
increases, and in consequence, the server clones credion is delayed. For ClientLoad
values below 1000 clients per tic, when the load is higher the system has the foll ow-
ing charaderistics. the alaptation gets dore quicker (due to afloodng of servers), is
less ensible to the initial number of servers, and has a lower final value of PCR
(higher server usage).

The dfeds of slow response for low ClientLoad values and locaion server overload-
ing could be compensated. The slow resporse could be improved by configuring the
agorithm parameters (the dient redistribution timeout and the top threshold) for a
faster response. The use of a higher number of initial applicaion servers would re-
duce the number of resolutions recaved at eat of the location servers. Nevertheless
the dynamic change of hierarchy of the locdion service would creae new locaion
server replicas, and the load would be redistributed between them. After a transition
phase (for locd client’s requests draining), the service would become available again
for the entire network.

4.3 Resultswith Strong Inter-server Synchronisation

Most services reguire some state synchronisation between servers. Thiswill i ntroduce
a limit to the maximum number of clients (load) which can be processed per tic. It is

still possble to use the dgorithm on these cases with minor corredions as long as the
client load is below the maximum value supported. The average service time in-
creases when anew server is creaed (and deaeases when one dies). When the service
time increases, fewer clients are serviced per time unit. In consequence, it takes less
time to read the load top threshold value. The resulting faster clone credion might
originate an explosion d server credion. The dgorithm was modified to avoid this
effed: the top threshold and the dient timeout values are incremented when the aver-
age service time increases and deaemented otherwise. It lets the system adapt more
slowly to load peaks.

We tested the goproach ona system with alinea degradation for each server (which
models a periodic synchronisation between the servers), with the service time given

by the following formula: ServiceTime= 0.1x (1+a x (NumberServers—l))-

Figures 5a and Sbshow the distribution of TT, and PCRto dfferent client loads, for
nine values of a ranging from O (no interference) to 0.07, and five initial servers.

6 a 16 (08
5 Py | —-—0 ——0
4 & —#-0005 147X\Y " "I |-=o0s
3l 001 12 001
+
2 ;\// /.-/ 0.02 1 R\ 0.02
== —*-003 \“ \. —*-003
0+ ‘ —-004 08 | —-004
100 1000 1000 | + 006 100 1000 1000 | + 005
. - 006 . - 006
ClientLoad
ient 007 ClientLoad 007
Fig.5a TT,, Fig. 5b. PCRat tic 30

The main effed of inter-server service degradation time is the eistence of a maxi-
mum value of ClientLoad! for each value of a. When ClientLoad approaches the
suppated maximum, TT, increases and the value of PCR deaeases. For some
ClientLoad values below the maximum, it takes too much time to deploy the neces-
sary servers (PCR below 1), and the system diverges. Although the maximum
ClientLoad for the value 0.07 is 143, the system diverges with 125 clients per tic.

5 Related Work

The use of replicaed objeds indexed by a global locdion service to suppart world-
wide gplicaions is also proposed on [8], [18]. Their locaion service is based ona
static hierarchic structure, with some scde limitations. Further, they do not handle
applicdions with overloaded servers.

1 MaxClientLoad = 1/ (0.1 x o)

An algorithm to control the locaion of a mobile but constant set of servers is pro-
posed on [17]. However, it only handles limited bandwidth problems.

Ancther approach introduces client based scdability [20] by consulting a server di-
redory and scanning for the best avail able server. This approach needs ome dient
modifications, and implements a limited architedure: the number of servers does not
adapt, and ead server will alwaysinteradt with all clients.

6 Conclusions and Future Work

This paper presents a @-operative ggent system that all ows applicaions to scde to
large networks with milli ons of users. The dynamic behaviour of the algorithm in face
of a strong rise on client demand was gsudied and severa conclusions were drawn
based onthe results. An owerall conclusionis the suitability of such systems and algo-
rithms to respond to "client peak invocaions'. Traditional approaches do not scde
andwill creae severe bottleneds if used under these @ndtions.

The simulation results srowed that applicaions sde with the dient load, until alimit
defined by the locaion server capabiliti es. If the range of values for clone aedion,
service time, and for name resolution are known, then some quality of service guar-
antees can be aared. By the corred control on the number of replicas initialy
deployed and the arred setting o the algorithm parameters, an applicaion may be
realy to respond to aroughly predicted rise of the dient demand. The inclusion of the
dynamic change of the hierarchy of the locaion server will most likely reduce the
dependency on the name resolution time. It is a subjed under study.

The use of the mobile agent paradigm provides a sound basis to implement a dynamic
service spedfic dgorithm for server deployment. Most of the mobile agent systems
available today alow the implementation of the proposed agorithm, if the location
servicefunctiondity isimplemented.

This paper covered atomic interadions between clients and servers. Multi-invocation
interadions and sesson interadions can introduce other requirements to the dgo-
rithms and are being studied as well.

Acknowledgements

This reseach has been partialy supported by the PRAXIS XX program, under con-
trad 2/2.1/TIT/163395.

References
[1] Baetsch, M., Baum, L., Molter, G., Rothkugel, S., Sturn, P.: Enhancing the web’s Infra-

structure: From Caching to Replication. |EEE Internet Computing, Vol. 1 No. 2, March-
April (1997) 18-27

(2]

(3]
(4]

(9]
(6]

(7]

(8]

(9]

(10]

(11

[12]
(13

[14]
[19]

[16]
(17)
(18]

(19

[20]

Baumann, J., Hohl, F., Radouniklis, N., Rothermel, K., Strafer, M.: Communicaion
Concepts for Mobile Agent Systems. In: Mobile Agents - Proceedings of the First Inter-
national Workshop an Mobile Agents (MA’97), Germany, Springer-Verlag LNCS Val.
1219, April (1997) 123-135

BEA: TUXEDO White Paper. (1996) http://www.beasys.com/Product/tuxwpl.htm
Bernardo, L., Pinto, P.: Scdable Service Deployment on Highly Populated Networks. In:
Intelligent Agents to Telemmmunicaion Applicaions - Procealings Seomond Interna-
tional Workshop IATA’98, Paris, Springer-Verlag LNCS Vol. 1437, June (1998)
Bestavros, A.. WWW Traffic Reduction and Load Balancing through Server-Based
Cading. [IEEE Concurrency, Vol 5N 1, January-March (1997) 56-66

Chavez A., Moukas, A., Maes, P.: Chalenger: A Multi-agent System for Distributed
Resource Allocation. In: Procealings of the International Conference on Autonomous
Agents, Marina Del Ray, California (1997)

Chig, T., Kannapan, S.: Strategicdly Mobile Agents. In: Mobile Agents - Proceealings of
the First International Workshop on Mobile Agents (MA’97), Germany, Springer-Verlag
LNCSVol. 1219, April (1997) 149-161

Condict, M., Milgjicic, D., Reynadlds, F., Bolinger, D.: Towards a World-Wide Civiliza
tion of Objeds. In: Procealings of the 7" ACM SIGOPS European Workshop, Ireland,
September (1996)

Deng, X., Liu, H.-N., Long, J., Xiao, B.: Competitive Analysis of Network Load Bal-
ancing. Journa of Parallel and Distributed Computing Vol. 40 N. 2, February (1997) 162-
172

IBM Aglets Workbench - Home Page. http://www.trl.ibm.co.jp/aglets/

Kistler, J., Satyanarayanau, M.: Disconneded Operation in the Coda File System. ACM
Transadions on Computer Systems VVol. 10(1), February (1992)

ObjedSpaceVoyager V1.0.1 Overview. http://wwwobjedspacecom/voyager/

OMG Inc.: The Common Objed Request Broker: Architedure and Spedfication, Rev
2.0. July (1995)

OMG Inc.: Trading Service OMG TC Document 95.10.6, October (1995)

OMG Inc.: Mobile Agent Fadlity Spedficaion. OMG Draft, October (1997)
ftp://ftp.omg.org/pub/docs/orbos/97-10-05.pdf

Ptolemy projed home page. http://ptolemy.eec.berkeley.edu/

Ranganathan, M., Acharya, A., Sharma, S., Sdtz, J.: Network-aware Mobile Programs.
Technicd Report CS-TR-3659 and UMIACS TR 96-46, Department of Computer Sci-
ence aad UMIACS, University of Maryland, June (1996)

van Steen, M., Hauck, F., Tanenbaum, A.: A Model for Worldwide Trading of Distrib-
uted Objeds. In: Procealings TINA '96 Conference, Heidelberg, Germany, September
(1996) 203-212

Straer, M., Schwehm, M.: A Performance Model for Mobile Agent Systems. In: Pro-
cedlings International Conferenceon Parallel and Distributed Processng Techniques and
Applicaions PDPTA’97, Val. I, Las Vegas, (1997) 1132-1140

Yoshikawa, C., Chun, B., Eastham, P., Vahdat, A., Anderson, T., Culler, D.: “Using
Smart Clients to Build Scdable Services’. In: Procealings of the USENIX’1997, Ana-
heim, California, USA, January (1997)

