
Scalable Service Deployment using Mobile Agents
Luis Bernardo and Paulo Pinto

IST - Instituto Superior Técnico, Lisboa Portugal
Inesc, R. Alves Redol, 9 P-1000 Lisboa Portugal
Phone: +351.1.3100345 Fax: +351.1.3145843

{ lflb,paulo.pinto} @inesc.pt

Abstract. Very large networks with thousands of applications and mill ions of
users pose serious problems to the current traditional technology. Moreover, if
synchronised client behaviour exists then the limitations are strongly felt. Mo-
bile agent systems can be a suitable technology to answer to these requirements
if some aspects of the architecture are carefully designed. This paper proposes a
co-operative mobile agent system with a very dynamic and scalable trading
service. The system allows applications to deploy servers onto the network to
respond to demand making them self-configurable. Clients can also use mobile
agents with performance gains. Sets of simulations were performed to study the
scalabilit y of the overall system.

1 Introduction

In the current information technology era any new service involves a larger number of
end users. Very soon networks with milli ons of users and thousands of applications
will be at work. Despite of the size, which can by itself create operational problems,
applications might produce synchronised peaks of traff ic due to external events (e.g.
lotto draws, sport brokering and interactive TV contests). These peaks can drive parts
of the network to a halt i f not properly handled. A scalable application implementa-
tion must adapt to the intensity and relative distribution of the client load using a
dynamic set of servers.

A static approach to the problem, using a fixed number of servers and conventional
traders, would lead to inefficient resource usage solutions: either the number of serv-
ers is insuff icient (during peaks of the load) or there is an over-dimensioning of the
servers deployed. A scalable world-wide application implementation should also
cover two other aspects: servers must be able to run on an open world-wide set of
platforms (to set the maximum load limit as high as possible and to localise interac-
tions); and the server deployment and request binding should be tuneable (to allow
service specific optimisations). Most of the traditional scalable service implementa-
tions rely on a closed set of servers (WWW cache servers [1], TP monitors [3], task
load balancing algorithms [9], smart clients [20], and others). Such systems rely on
system load-balancing servers or on a "head" application server (which redirects the
requests to other servers), introducing potential bottlenecks. Additionally, the tech-
nology must eff iciently support the dynamic deployment of new servers: Factory
objects and ORB implementation repositories [13] might be used, however they are
not optimised to deal with the dynamic creation of new types of servers. The required

semantic resulting from all these requirements is met with the mobile agent paradigm:
It provides a simple way to deploy personalised services (replica creation from an
initial service provider’s server) and an open ubiquitous platform where mobile
autonomous agents might run.

The solution proposed in this paper is based on a mobile agent system approach and
on new scalable algorithms for the trader (called here location service) and services.
Servers are implemented using mobile agents, and can deploy new replicas when the
demand rises, or migrate towards the location of the majority of the clients. They use
the service dynamic topological information from the location service, the client load,
and the overall situation of other peer servers, to control the deployment of new serv-
ers and adapt precisely to the client load. Server agents are autonomous on their con-
trol over server deployment.

Our system assumes a scenario where clients look for a precise service. Clients use
the location service to resolve unique application names to single server references.
The system does not support service discoveries based on characteristics (price, avail -
abilit y, etc.). Each application server sets an area of the network for its service to be
known (server domain). The location service takes into account its own load and
server domain sizes to change dynamically its configuration. As other services, the
location service is implemented using mobile agents.

The rest of this paper is organised as follows. Section 2 presents a system overview,
including the client implementation and location service. Server deployment control
and inter-server synchronisation is discussed in section 3. Section 4 presents a study
of the dynamic behaviour of servers in face of a rising client demand. Section 5 de-
scribes related work and Section 6 concludes. This paper extends a previous one [4]
by examining thoroughly the mobile agent utili sation and by extending the dynamic
behaviour scalabilit y analysis ([4] restricts its analysis to the server creation algo-
rithm).

2 System Overview

The network provides a ubiquitous platform of agent systems, in which any agent
(server or client) can run. Each agent system is tied to a location server (running lo-
cally or on another nearby system), where all the interfaces of the local agents are
registered. This location server is connected to others to offer a global service.

The proposed architecture does not conflict with the standardisation efforts of OMG
[15], or some of the available mobile agent systems (Aglets [10], MOLE [19], Voy-
ager [12], etc). Mobile agents are defined as autonomous objects, which may commu-
nicate with other objects or agents through a variety of interfaces [2], and are able to
migrate or start agents on remote agent systems. The main differences are the location
service requirements.

When a client searches for an application name, the location service helps in the
binding process (the association to a server) directing it to the nearest server. If the

location server knows more than one server, it will do splitti ng of client traff ic. If it
knows that a new, and closer, server was created it will start using the new one, and
propagates this information. When a client comes for resolution it will get the best
answer for that moment.

The balance between the number of clients, servers and location servers acts as a
general load balancing mechanism in the system. The number of application servers
will vary with the number of active clients, and the number and range of each location
server will vary with both the numbers of active clients and the application servers.

2.1 Clients

Clients may interact with servers using Remote Procedure Calls (RPC) from their
location nodes (or other remote interaction mechanism), may migrate to the server's
agent system, or do both if, for instance, the first fails. Although not essential, mobil -
ity on the client side has advantages in terms of the overall traff ic on the network: it
gets more asynchronous (less demanding in “peak” network usage), can support un-
stable connections to mobile computers more easily, and could be tailored to satisfy a
set of routing constrains according to a service specific algorithm. Performance mod-
els for both approaches ([7], [19]) showed some of the combined RPC/client mobilit y
performance advantages when filtering large amounts of data or when performing
multiple interactions over low bandwidth links. However, client migration may also
cause the overloading of the servers' agent system. To avoid such effect, the client
agent migration destiny is selected using the remote location server. Notice that on the
system described here, the impact of variable network latency is lower than on the
referred models because of the server mobilit y, which reduces the “distance” between
clients and servers.

The system provides a simple way to integrate legacy system clients, which may
interact with server agents using RPC (for instance CORBA IIOP [13]).

2.2 Location Service

The location service is one of the major players for scalabilit y. It has two different
roles: at the location server domain (the set of agent systems tied to a server), it must
provide detailed local information and balance requests among local available servers
(for each service); at a global level, each location server must provide a scalable
global trading information service (although not complete). The global load balancing
is based on network proximity relations.

The necessity for fast updating during the creation of a server clone, the propagation
of frequent updates due to migration, and the dynamic nature of the information in
this system (based on dynamic server domains) introduce a high overhead which
invalidate some of current technical solutions based on static hierarchic systems (e.g.
DNS, X.500 or OMG Trading [14]). See [4] for details.

 A scalable and highly mobile system must have the following characteristics: Firstly,
the application names must be flat ([18] reached a similar conclusion). Secondly, the

location search path, which is now independent from the application name structure,
must be performed on a step-by-step basis, through a path of location servers where
each one contain routing information indexed by the application names. Thirdly, the
load and characteristics of the overall system should tune this step-by-step path.

 One important feature is how the location service scales to a large population. We use
a mixture of meshed and hierarchic structure where location servers at each hierarchi-
cal level interact with some of the others at that level and (possibly) with one above.
Higher hierarchic levels offer a broader but less detailed vision of the services avail -
able. The hierarchical structure and the scope of the mesh change dynamically ac-
cording to the load of the system, and to the size of the server domains.

 The server domain is service specific. For instance, a car parking service would sim-
ply advertise on the surroundings of each car park, while a popular lotto broker serv-
ice would advertise on a broader range (pricing schemes could be a deterrent to artifi-
cially large domains). Clients control their search range. Due to lack of depth, or
incomplete information, resolutions can fail , and a deeper search must be tried.

 3 Servers

Under the envisioned conditions, server development is a delicate task, because most
of the time there will be only a vague forewarn of how high the "peak” of the load
will be, or when it will happen. An adaptation algorithm is required, to achieve the
service requirements.

3.1 Server Deployment

Several reasons can originate the deployment of a new server (or the migration of an
idle one). A new server can help solving problems related to: 1) insuff icient process-
ing resources (the overloading of the available servers); 2) insufficient bandwidth (by
providing a proxy server which compresses the data); or 3) the support of unstable
connections (by providing a local service proxy, which re-synchronises with the re-
maining servers after connection re-establishment). The proposed algorithm is opti-
mised to deal with the first problem.

A good measure of the quality of service for this system is the global service response
time to client requests. For each application, this time must be confined within spe-
cific bounds. It includes: the time to resolve the application name to a server reference
(at the location service), plus a waiting time due to client load, plus a service time
dependent on the application (which depends on whether it is a single RPC or a ses-
sion, on the overheads for distributed data consistency, etc.).

The adaptation algorithm aims at controlli ng the number of server agents deployed,
but also their locations and each server domain, to keep the waiting time under control
due to client load. The most important parameter will be the number of servers. How-
ever, the others will i nfluence the relative distribution of clients, and the load induced

at the location servers. As clients are bound to servers based on the distance, some
unbalancing can exist depending on the relative distribution of clients.

The adaptation algorithm proposed for overloaded servers in this paper is isolated.
I.e., each server monitors its local load to detect conditions which violate the applica-
tion requirements (threshold values are used), and compiles the clients' origins. Any
server activity measurement might be used. However, best results are achieved if the
load includes a measurement of the queued client requests waiting at the server.

If the load goes above a top threshold value, the server creates and deploys a new
server. The replica location is selected amongst the most frequent sources of agents
(local or not). The new replica will start running after Tclone, which is the time to create
a clone on the remote agent system, plus the delays at the location service (dissemi-
nation of the new clone’s server reference). During this period, new clients continue
to bind to an already overloaded server. So, the triggering mechanism of the top
threshold value is disabled for a duration dependent on Tclone. A simple load measure-
ment is the length of the waiting clients’ queue, where the disabled period is con-
verted in an increment of the threshold value (proportional to the clients processed by
a new server during its creation). In result, the replica creation rate is controlled by the
client request’s arrival rate.

If the demand is very high, a server might become crowed with bounded clients (and
the waiting time exceeds largely the server response time). A redistribution of clients
must then take place to speed up the client’s service total response time. The server
can unbind some of the clients, or can mutate itself (i.e., close the old interface and
create a fresh one). This will force a new resolution phase for all waiting clients and a
redistribution of the clients for the available servers.

Dynamically created servers are destroyed using a market based control technique [6].
When a server’s load goes below a bottom threshold, it sends messages to the other
servers within a maximum range, requesting one of them to take its place. Requested
server’s answer with bid messages, stating if they can expand their domain and their
load. To speed up the overall system response, servers are not blocked for a “bid”
time. The resolution phase (load transfer phase) is acknowledged, and the load trans-
fer can be aborted if, for instance, the server had its load increased in result of another
ending server and can not handle the new clients. After a load transfer is accepted, the
location service is updated, and the originating server dies.

Compared to other approaches based on scheduler objects [3],[9] or inter-server syn-
chronisation [6], the use of an isolated algorithm during overload conditions allows a
faster response, and scales to higher levels of client requests. However, it may cause a
temporary deployment of a higher number of servers, if for instance, the majority of
the origin of the clients moves to another region of the network. During a transition
phase, new servers are created while some of the previous ones die.

A complementary algorithm can be used during moderate overloaded conditions
(triggered by a lower second high threshold value), or as a response to client maxi-
mum delay overrun reports. An example for this algorithm might be a market based

control technique that would search for a underused server, prior to creating a new
one. The selected server would migrate to the needed region, after delegating its pre-
vious server domain.

The presented algorithms also apply to the location servers, with slight modifications.
Location servers may create a replica and split a location domain to reduce its load, or
may join with another neighbour. The redistribution procedure also applies to the
location servers. After a location server mutation, only agents inside the location
domain will be able to reach it. Remote clients using RPC which need this location
server (even indirectly) will have to wait for interface information dissemination.

3.2 Service Implementation

The proposed system is not restricted to applications which might be implemented
with parallel independent servers. It can also be applied both to systems with partial
non-mobilit y requirements (due to a static component or a huge amount of data), or to
applications with intra-server synchronisation requirements.

The system is flexible in terms of mobilit y requirements because even applications
with non-mobile components might partially use this scalable feature. If their seman-
tics allow, several smaller interface agents can be deployed in the system. They may
implement caches of information (e.g. HTTP [1],[5]), concentrators of client requests
or generic proxies (e.g. [8]), reducing the non-mobile components’ load.

Depending on the nature of the service, servers might need extra specific synchroni-
sation logic to maintain consistency of shared data between the servers. The average
service time will i ncrease with the number of servers. The algorithm will only be
applicable when the processing capacity gain of a new server is higher than the aver-
age service degradation. It provides better results when servers can work autono-
mously or have low coherence requirements. An example of the latter kind is the
CODA distributed file system [11], where the coherence is implemented on limited
points on time, with littl e or almost no degradation of service time. For applications
where a stronger coherence is needed, the improvements may also come from the
deployment of interface agents. The maximum intra-synchronisation rate will li mit
the maximum number of deployable servers, and the maximum client load supported.

4 Dynamic Behaviour

The analysis of the dynamic behaviour of the system was performed with a simulator,
developed using the Ptolemy [16] simulation system. The set of tests presented fo-
cuses on the study of the adaptation to a constant demand from clients, which origi-
nates server overload. Application servers run both the server creation and server
destruction algorithms. The effect of the location service was reduced by setting a
low-resolution time (compared to the application service time), and by disabling the
dynamic change of the hierarchy. Nevertheless, it still runs the application name dis-
tribution algorithm, which introduces a delay between the deployment of a new server

and the stabili sation of the location service information. The effects of the variation of
the latency on the communication between agents were not considered, by setting it to
a constant value. This very symmetrical scenario produces highly synchronised reac-
tions on servers, but it is clearly the worst case.

4.1 Simulation Environment

All tests were conducted with the network pre-
sented in figure 1 (132 agent systems and 19
static location servers). Results were collected
at the end of each measuring interval of 0.5
units of simulation time (0.5 tics). The duration
of each simulation was 30 tics.

Fig. 1. Simulated meshed network

The simulation assumes an atomic interaction between clients and servers. A client is
born and lives until it can make an invocation to the server. Our main results are the
client’s li fetimes, which are the overall application response times.

The application and location service servers are modelled by a queue defined by a
service time probabilit y function, TS and TL respectively. For all the experiments re-
ported in this paper, TL and TS have deterministic functions with the values 0.001 and
0.1 tics respectively. The transmission time was set to 0.0001 tics, and the clone crea-
tion time to 1 tic. Servers use the number of requests on the queue as a load measure-
ment to trigger the creation of servers, and the average utili sation time (a weighted
average of measurements in 0.5 tic intervals) as a load measurement to trigger the
server destruction. The top threshold value was 15 clients in queue, and the temporary
increment due to clone creation was 15 clients (1.5 times Tclone divided by TS). The
bottom threshold value was 50% of the processing time. All the reported results were
obtained with the same client redistribution procedure: clients waiting in the applica-
tion server queue are unbound if their waiting time exceeds a duration of 1.5 tics.
New clients were generated with a uniform distribution of the inter-server deployment
time on the interval [0, 2/ClientLoad] over a group of 125 nodes. ClientLoad defines
the average number of clients that enters into the system during a time unit.

4.2 Time Evolution

Figure 2 shows the evolution over time of some averages during each measuring
interval of: New Clients, the number of clients which entered the system; Unbinds, the
number of clients unbound during the interval; Pending Clients, the number of clients
waiting on queues (of both application and location servers); Ending Clients, the
number of clients which died during the interval; and Processing Capacity, the maxi-
mum number of clients that the servers can process during the interval. The second
graphic shows the evolution of the average global response time per client measured
on each interval, represented by TT (Total Time). The curves were measured with an
average (ClientLoad) of 250 clients per tic (125 per measuring interval) and five ini-
tial servers.

0

100

200

300

400

500

0 10 20 30
Time

New Clients

Pending
Clients
Processing
Capacity
Ending
Clients
UnbindsTsetup

Fig

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 10 20 30

Time

T
T

Fig. 2. Service Response – evolution on time of the number of clients and of the total delay

As soon as client requests start (at tic 1), the number of pending clients grows until a
point in time where the processing power deployed is enough for the client load, Tsetup.
After that it starts to decrease. TT continues to grow just for a short while after this
point (the curves are almost equal because redistribution was used, as curve Unbinds
show). With the reduction of the number of pending clients, the number of servers
decreases. However, the processing capacity is always above the new client rate due
to the 50% idle time allowed for each server (the minimum load threshold). It is clear
how the system gets stable with a very low and constant response time.

The time measurements used in the remaining sections were: the average value of the
client li fetimes, TTavg, and the time value that includes 95 percent of all client li fe-
times, TT95 (which gives a notion of how high the delay peak is). Additionally, the
“Processing Capacity Ratio” (ratio between the maximum number of clients that
servers can process and the number of clients entering the system) quantifies the
availabilit y of processing resources to satisfy the client demand. The variation of the
client waiting time depends on the value of the processing capacity ratio (PCR) and
on the distribution of clients per server. It gets higher when the PCR is below one and
gets lower otherwise (assuming a completely balanced system).

4.2 Results with Weak Inter-server Synchronisation

The algorithm performance depends on a number of parameters and options, which
include: the client redistribution procedure, the time to create a clone, the top thresh-
old value, the timeout value (with partial client unbinding), the initial number of
servers, and the ClientLoad. The presented results focus on the scalabilit y with
ClientLoad. A study on the effect of some of the other parameters on the server crea-
tion algorithm can be found in [4].

The next set of experiments study the system response to different client loads (rang-
ing from 125 clients per tic to 8000 clients per tic), using two different numbers for
the initial servers (initial processing capacity of 10 and 50 clients per tic). Figures 3a,
3b and 4 show the distribution of TTavg, TT95 and PCR.

0

0.5

1

1.5

100 1000 10000

ClientLoad

5s

1s

Fig. 3a. TTavg

1
2
3
4
5
6
7

100 1000 10000

ClientLoad

5s

1s

Fig. 3b. TT95

The results show a minor variation of
the response times (TT95 and TTavg) and
of PCR compared to the variation on
ClientLoad (6400%), which prove the
algorithm scalabilit y. The initial number
of servers has a great influence on the
three parameters, except for the final
number of servers deployed (PCR).
Location servers (which support a
maximum of 1000 requests per tic)

influence negatively the system response for ClientLoad values above 1000. This
effect in specially noticeable with a single starting server (but also for five starting
servers for 8000 clients per tic), where the overloading of the single initial application
server’s location server occurs. In result, the time to resolve the application names
increases, and in consequence, the server clones creation is delayed. For ClientLoad
values below 1000 clients per tic, when the load is higher the system has the follow-
ing characteristics: the adaptation gets done quicker (due to a flooding of servers), is
less sensible to the initial number of servers, and has a lower final value of PCR
(higher server usage).

The effects of slow response for low ClientLoad values and location server overload-
ing could be compensated. The slow response could be improved by configuring the
algorithm parameters (the client redistribution timeout and the top threshold) for a
faster response. The use of a higher number of initial application servers would re-
duce the number of resolutions received at each of the location servers. Nevertheless,
the dynamic change of hierarchy of the location service would create new location
server replicas, and the load would be redistributed between them. After a transition
phase (for local client’s requests draining), the service would become available again
for the entire network.

4.3 Results with Strong Inter-server Synchronisation

Most services require some state synchronisation between servers. This will i ntroduce
a limit to the maximum number of clients (load) which can be processed per tic. It is

1

1.2

1.4

1.6

1.8

2

100 1000 10000

ClientLoad

PCR 5s

PCR 1s

maxPCR 5s

maxPCR 1s

Fig. 4. PCR

still possible to use the algorithm on these cases with minor corrections as long as the
client load is below the maximum value supported. The average service time in-
creases when a new server is created (and decreases when one dies). When the service
time increases, fewer clients are serviced per time unit. In consequence, it takes less
time to reach the load top threshold value. The resulting faster clone creation might
originate an explosion of server creation. The algorithm was modified to avoid this
effect: the top threshold and the client timeout values are incremented when the aver-
age service time increases and decremented otherwise. It lets the system adapt more
slowly to load peaks.

We tested the approach on a system with a linear degradation for each server (which
models a periodic synchronisation between the servers), with the service time given
by the following formula: ()()ServiceTime NumberServers= × + × −01 1 1. α .

Figures 5a and 5b show the distribution of TTavg and PCR to different client loads, for
nine values of α ranging from 0 (no interference) to 0.07, and five initial servers.

0
1
2
3
4
5
6

100 1000 10000

ClientLoad

0
0.005
0.01
0.02
0.03
0.04
0.05
0.06
0.07

0.8

1

1.2

1.4

1.6

100 1000 10000

ClientLoad

0
0.005
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Fig. 5a. TTavg Fig. 5b. PCR at tic 30

The main effect of inter-server service degradation time is the existence of a maxi-
mum value of ClientLoad1 for each value of α. When ClientLoad approaches the
supported maximum, TTavg increases and the value of PCR decreases. For some
ClientLoad values below the maximum, it takes too much time to deploy the neces-
sary servers (PCR below 1), and the system diverges. Although the maximum
ClientLoad for the value 0.07 is 143, the system diverges with 125 clients per tic.

5 Related Work

The use of replicated objects indexed by a global location service to support world-
wide applications is also proposed on [8], [18]. Their location service is based on a
static hierarchic structure, with some scale limitations. Further, they do not handle
applications with overloaded servers.

1 MaxClientLoad = 1 / (0.1 � �)

An algorithm to control the location of a mobile but constant set of servers is pro-
posed on [17]. However, it only handles limited bandwidth problems.

Another approach introduces client based scalabilit y [20] by consulting a server di-
rectory and scanning for the best available server. This approach needs some client
modifications, and implements a limited architecture: the number of servers does not
adapt, and each server will always interact with all clients.

6 Conclusions and Future Work

This paper presents a co-operative agent system that allows applications to scale to
large networks with milli ons of users. The dynamic behaviour of the algorithm in face
of a strong rise on client demand was studied and several conclusions were drawn
based on the results. An overall conclusion is the suitabilit y of such systems and algo-
rithms to respond to "client peak invocations". Traditional approaches do not scale
and will create severe bottlenecks if used under these conditions.

The simulation results showed that applications scale with the client load, until a limit
defined by the location server capabiliti es. If the range of values for clone creation,
service time, and for name resolution are known, then some quality of service guar-
antees can be assured. By the correct control on the number of replicas initially
deployed and the correct setting of the algorithm parameters, an application may be
ready to respond to a roughly predicted rise of the client demand. The inclusion of the
dynamic change of the hierarchy of the location server will most likely reduce the
dependency on the name resolution time. It is a subject under study.

The use of the mobile agent paradigm provides a sound basis to implement a dynamic
service specific algorithm for server deployment. Most of the mobile agent systems
available today allow the implementation of the proposed algorithm, if the location
service functionality is implemented.

This paper covered atomic interactions between clients and servers. Multi -invocation
interactions and session interactions can introduce other requirements to the algo-
rithms and are being studied as well .

Acknowledgements

This research has been partially supported by the PRAXIS XXI program, under con-
tract 2/2.1/TIT/1633/95.

References

[1] Baentsch, M., Baum, L., Molter, G., Rothkugel, S., Sturn, P.: Enhancing the web’s Infra-
structure: From Caching to Replication. IEEE Internet Computing, Vol. 1 No. 2, March-
April (1997) 18-27

[2] Baumann, J., Hohl, F., Radouniklis, N., Rothermel, K., Straβer, M.: Communication
Concepts for Mobile Agent Systems. In: Mobile Agents - Proceedings of the First Inter-
national Workshop on Mobile Agents (MA’97), Germany, Springer-Verlag LNCS Vol.
1219, April (1997) 123-135

[3] BEA: TUXEDO White Paper. (1996) http://www.beasys.com/Product/tuxwp1.htm
[4] Bernardo, L., Pinto, P.: Scalable Service Deployment on Highly Populated Networks. In:

Intelli gent Agents to Telecommunication Applications - Proceedings Second Interna-
tional Workshop IATA’98, Paris, Springer-Verlag LNCS Vol. 1437, June (1998)

[5] Bestavros, A.: WWW Traff ic Reduction and Load Balancing through Server-Based
Caching. IEEE Concurrency, Vol 5 N 1, January-March (1997) 56-66

[6] Chavez, A., Moukas, A., Maes, P.: Challenger: A Multi -agent System for Distributed
Resource Allocation. In: Proceedings of the International Conference on Autonomous
Agents, Marina Del Ray, Cali fornia (1997)

[7] Chia, T., Kannapan, S.: Strategically Mobile Agents. In: Mobile Agents - Proceedings of
the First International Workshop on Mobile Agents (MA’97), Germany, Springer-Verlag
LNCS Vol. 1219, April (1997) 149-161

[8] Condict, M., Milojicic, D., Reynolds, F., Bolinger, D.: Towards a World-Wide Civili za-
tion of Objects. In: Proceedings of the 7th ACM SIGOPS European Workshop, Ireland,
September (1996)

[9] Deng, X., Liu, H.-N., Long, J., Xiao, B.: Competitive Analysis of Network Load Bal-
ancing. Journal of Parallel and Distributed Computing Vol. 40 N. 2, February (1997) 162-
172

[10] IBM Aglets Workbench - Home Page. http://www.trl.ibm.co.jp/aglets/
[11] Kistler, J., Satyanarayanau, M.: Disconnected Operation in the Coda File System. ACM

Transactions on Computer Systems Vol. 10(1), February (1992)
[12] ObjectSpace Voyager V1.0.1 Overview. http://wwwobjectspace.com/voyager/
[13] OMG Inc.: The Common Object Request Broker: Architecture and Specification, Rev

2.0. July (1995)
[14] OMG Inc.: Trading Service. OMG TC Document 95.10.6, October (1995)
[15] OMG Inc.: Mobile Agent Facilit y Specification. OMG Draft, October (1997)

ftp://ftp.omg.org/pub/docs/orbos/97-10-05.pdf
[16] Ptolemy project home page. http://ptolemy.eecs.berkeley.edu/
[17] Ranganathan, M., Acharya, A., Sharma, S., Saltz, J.: Network-aware Mobile Programs.

Technical Report CS-TR-3659 and UMIACS TR 96-46, Department of Computer Sci-
ence and UMIACS, University of Maryland, June (1996)

[18] van Steen, M., Hauck, F., Tanenbaum, A.: A Model for Worldwide Tracking of Distrib-
uted Objects. In: Proceedings TINA '96 Conference, Heidelberg, Germany, September
(1996) 203-212

[19] Straβer, M., Schwehm, M.: A Performance Model for Mobile Agent Systems. In: Pro-
ceedings International Conference on Parallel and Distributed Processing Techniques and
Applications PDPTA’97, Vol. II , Las Vegas, (1997) 1132-1140

[20] Yoshikawa, C., Chun, B., Eastham, P., Vahdat, A., Anderson, T., Culler, D.: “Using
Smart Clients to Build Scalable Services” . In: Proceedings of the USENIX’1997, Ana-
heim, Cali fornia, USA, January (1997)

