
Low-Level Multimedia Synchronization Algorithms on
Broadband Networks

Miguel Correia , Paulo Pinto

Instituto Superior Técnico, Av. Rovisco Pais, 1 P-1000 Lisboa, Portugal
INESC, R. Alves Redol, 9 P-1000 Lisboa, Portugal

+351 1 3100301
{mpc,pfp}@inesc.pt

ABSTRACT This paper addresses algorithms to meet the QoS
parameters related with the synchronization of
isochronous (or continuous) media. It is broadly accepted
to divide the synchronization problem into high level
(extrinsic) synchronization; and low level (intrinsic)
synchronization. The first refers to the media
presentation control problem and is related to the object
model and the composition concepts of the basic parts of
the objects (when they begin, end, etc.). There are
already some standards (HyTime[12], MHEG[7]) and
also other academic contributions ([19],[10] and [14]).

As general purpose non-real-time systems start to be able
to capture, present, store and transmit multimedia
information, the need for low-level synchronization
algorithms for continuous media transmission arises as a
requirement for desktop applications such as video-
conference and video-on-demand. This paper presents a
complete scheme to obtain such synchronization with an
intended quality of service (QoS). Algorithms handle
both intramedia and intermedia synchronization and act
progressively as the problems get more serious. A
conditional retransmission mechanism adequate for
multimedia information is defined. An adaptive QoS
degradation scheme is proposed as the solution for CPU
heavy loads or network congestion. The heuristics to
calculate the algorithm parameters when using
"unknown" networks are sketched. The QoS values
obtained are discussed.

Low-level synchronization, which will be the subject of
this paper, is concerned mainly with two problems: the
continuity of a medium presentation (intramedia
synchronization); and the larger problem of
synchronization between two or more signals (intermedia
synchronization), transmitted from one origin to one
destination, from several origins to one destination, or
from one origin to several destinations.KEYWORDS

Low-level synchronization, Distributed multimedia
systems, Broadband Networks. 2. MOTIVATION AND OVERVIEW

2.1 Problems
1. INTRODUCTION In a real-life distributed multimedia system there are a

number of aspects that require an explicit low-level
synchronization.

The ability of computers and networks to handle high
throughput data, and the existence of specific hardware
(and software) to capture and present video and audio,
are introducing this type of information into the
application area. Their handling is becoming as easy as
manipulating text and still pictures. Systems composed
of "fast" workstations with video and audio hardware,
and connected by a broadband network are called
"distributed multimedia systems".

(a) Networks introduce transmission delay jitter (delay
variation). The existence of this jitter means that the
portions of data are not received at a constant rate,
and consequently, cannot be presented as soon as
they arrive. Another relevant and equivalent jitter is
the one introduced by the variation of the
transmission instant at the transmitter.

However, several problems exist due to the need of using
non-real-time operating systems and asynchronous
networks, i.e. best-effort systems. The sensible approach
to solve the problem is to define a set of conditions that
ought to be preserved during the overall handling of the
isochronous signals. This set, called "quality of service"
(QoS), is composed of several parameters that define
quality levels required for the presentation of the data.

(b) Workstations have different clock rates. This
mismatch is modeled with the concepts of skew (the
frequency difference) and drift (the difference
variation). It can cause the loss of continuity between
the transmitter and the receiver, or the loss of
intermedia synchronization between different
transmitters. Values measured can go as high as
30x10-6 Hz. An additional skew component is
introduced by the granularity of time measurement.
This component can reach higher values than clock
rate difference itself.

If drift did not exist, a frequency adjustment could be
performed only once to compensate the skew (the

frequencies difference). Otherwise a permanent
running mechanism is necessary.

described (it does not need an explicit intermedia
synchronization). However, the option of different
connections makes sense because it is a more general
solution allowing for the generation of data in
different computers; because different types of
streams have different requirements towards resource
reservation [13]; and because they have different
sensivity toward QoS.

Skew and drift can be avoided by the use of clock
synchronization protocols, such as NTP [11].
However, this is not desirable for two main reasons:
because specific mechanisms (like the one that will
be described) are more simple and light; and because
if the workstations belong to different entities, they
may not accept total synchronization. (4) The system has two operation modes: "interactive"

and "non-interactive". "Interactive" is used, for
instance, on conference systems, that capture the
information in run-time and need a low latency.
"Non-interactive" is used, for example, on video-on-
demand systems, that can afford to have longer start
up delays (latency) to achieve better QoS levels.
Systems using this last mode transmit information
stored in a disk or similar device, so it is possible to
advance or delay the whole presentation process.

(c) Instantaneous CPU loads can cause CPU
unavailability when time constrained actions such as
information presentations are due. A non-real-time
CPU can never guarantee an instant so the
algorithms consider (reasonable) intervals. These
intervals are defined by a beginning instant and a
tolerance.

(d) Networks and CPUs can have highly variable loads.
A CPU heavy (and not instantaneous -- (c)) load can
prevent the synchronization and presentation
processes from having time to do their job, causing
discrete losses on the stream. Network heavy loads
and congestion can prevent the presentation process
from having information available to be presented
when needed.

The first algorithm described in the paper deals with
intramedia synchronization. This kind of
synchronization guarantees that one channel's
information is received before the end of its presentation
interval. It also guarantees that the reception and
presentation frequency are similar, to avoid buffer
overflow or underflow. The second algorithm handles
intermedia synchronization. This synchronization has to
deal with skew and drift between the transmitters and
different average delays between each transmitter and
the receiver.

(e) The last network relevant effect is only related to
intermedia synchronization. When different
workstations are sending signals to be synchronized,
the average propagation delays may differ
considerably due to the effect of delays introduced in
intermediate bridges, routers, etc. This difference
should be taken into account when the process is
started, to avoid the reception of information from
one origin in advance of the information from the
other sources, as it would lead to prohibitive amounts
of buffering.

2.3 Final Considerations
Usually, multimedia information does not need a hard
real-time handling. Small and temporary QoS losses,
such as a few milliseconds of sound or a single image,
are not disturbing to human senses. However, some
compression algorithms make some information more
important than others. A selective discarding method
would have to be used for these cases (not considered
here). On the other hand, to guarantee that all
information is presented on time, real-time systems (like
the ones in most of the references) have to consider the
worst-case situation, leading to undesirable large buffers
and end-to-end delays. Even if this was done for best-
effort systems, it would not guarantee 100% of the QoS
required because the non-real-time operating system does
not guarantee presentation (or other) instants, and
because the non-real-time network does not guarantee
maximum transmission delays. Consequently, the
algorithms described do not work with worst-case values
but with average ones that allow QoS level violations
with some probability. Increasing or decreasing the
latency and buffering decreases or increases the
presentation probability. It is interesting to state the fact
that on the system used in practice, about 99% of the
jitter values are smaller than 1% of the maximum value
measured. This allows reasonable QoS values without an
excess of resources.

2.2 Algorithm Characteristics
This paper describes an algorithm to solve the problems
just listed with the following characteristics:

(1) It works at the reception instants so the corrections to
clock frequencies that have to be made can have a
better precision than in schemes based on buffer fill
levels, much used in the references. It assumes a
fixed delay from reception to presentation of data.

(2) It has different levels of action to handle the
problems according to their nature: delay jitters are
controlled by a conventional buffering scheme; clock
frequency differences are treated by period
adjustments (the same as frequency adjustments);
instantaneous loads are dealt with information
discarding; and heavy loads are treated with QoS
degradations. This progressive scheme provides low
overhead when it is not needed.

(3) It uses different network channels for each stream of
data. The use of a single multi-stream connection,
used by MPEG [6], avoids some of the difficulties just

3. RELATED WORK handle. [8] presents some algorithms for a real-time
system. It uses the synchronization channel proposed in
[18] and achieve synchronization at the level of
synchronization units (SU). The path from low-level
synchronization concepts to high-level ones is the
following. Several SUs from different streams form a
group for the purpose of time constraints. A sequence of
SUs in time form an activity which is an application
concept. In between there are the transport level concepts
of segment to cope with transmission synchronization.

Intramedia synchronization algorithms that treat jitter
and skew can be found in [4]. A worst-case scenario is
assumed, with the problems just referred. The pre-fetch
amount of data and the maximum and minimum buffer
fill levels to detect the existence of skew are deduced
formally using the value for the maximum jitter. Rate
matching is based on the values for input and output
period times which are difficult to estimate. The skew
control scheme is based on the buffer usage, proposed
originally by [5], but with a significant difference: the
cells considered in [5] have 53 bytes and, consequently, a
high rate; the messages considered in [4] have at least
some hundreds and, consequently, a much lower rate.
The paper considers a real-time operating system and so
it does not consider the problems caused by machine and
network loads and does not address intermedia
synchronization.

The ATM AAL 1 [5] layer defines algorithms to adjust
the receiver clock rate to the transmitter one. Such
algorithms will be used to control skew and drift at a
very low level, immediately above the ATM layer. This
is not of a great help to the problem in hand for several
reasons. It does not take care of jitter or loads introduced
by the operating system and cannot take any action, such
as reducing the QoS, if there is a heavy load or
congestion in the machine. Another problem is that the
ATM reception clock may be different from the
presentation one, introducing a new skew/drift between
these clocks. A better approach is to renounce the
services of AAL1, and have a new algorithm working as
near as possible to the presentation interface and to use
ALL5 or AAL null over ATM.

A value for the maximum jitter was also used in [17] on
a proposal for video-on-demand like systems. The
topology considered is not typical: one transmitter and
several receivers. Intramedia synchronization is solved
with pre-fetch and buffering, using a feedback technique
for rate adaptation based on light-weight messages sent
by the receiver after receiving selected messages. The
rate at which feedback units must be sent to maintain
continuity is deduced from the round-trip delay.
Intermedia synchronization uses one stream as the
master and Relative Timestamps defined at recording
time.

4. INTRAMEDIA SYNCHRONIZATION
Some considerations about the transport protocol,
retransmission mechanisms and temporal model of the
system are given before the description of the receiver
and transmitter roles. The last section focuses on the
determination of the parameters.The closest proposal to this paper can be found in [1].

Jitter is again compensated by pre-fetch and rate
matching is done by "skipping and pausing" units of
data. There are no smaller adjustments than these. The
handling of continuity of streams is performed by
mapping the data units onto a Logical Time System
(LTS) instead of sample-level synchronization.
Intermedia synchronization is achieved by considering
one of the streams as a master and skip or duplicate units
on the slaves to keep them synchronous with the LTS. In
case of network congestion the system blocks, so this
scheme is not very adequate for interactive transmission.
TCP was chosen for the transport protocol causing delays
and increase of traffic due to retransmission when there
are losses.

4.1 Transmission Protocols and the Retransmission
Mechanism
The synchronization algorithms are encapsulated in a
synchronization layer that has two independent
functions: transmit and receive. In normal operation
mode, one side is the transmitter, the other side the
receiver. They communicate by sending packets as
shown in fig. 1. There are two kinds of packets:
information and control. The basic unit of data is called
an information unit (IU). A video IU is a frame; an audio
IU is a set of samples correspondent to a time interval.
An information packet can carry an IU or a fraction of it.
The current implementation sends one audio IU in one
information packet and a video IU in more than one
(When one or more packets of a multi-packet IU are lost,
the decision on the use of the incomplete IU is
transferred to the application). There are five control
packets: START - to ask for data transmission and
negotiate the initial QoS values; ECHO - to measure the
round-trip delay; REQ - to request a retransmission;
CHNG - to perform a QoS degradation or to change the
transmitter clock period; and RESET - to reinitialize the
communication. ECHO packets are sent periodically by
the receiver and returned by the transmitter. The time of
the "trip" is used to get a round-trip delay average value
(greater weights are give to recent measures).

[22] presents a scheme for network congestion control,
based on bit and packet rate scaling, in a non-real-time
system. This scaling means a QoS degradation. The
problem of heavy loads in the CPUs is not addressed.
The key problem is to find sustainable values for those
rates, with an acceptable QoS, during a congestion.

[16] presents schemes and policies to achieve intramedia
and intermedia synchronization based on Petri Nets. The
system is assumed to be real-time and the heavy loads'
problem is addressed. [13] gives a two level
synchronization scheme that allows the application to
specify the synchronization granularity that it can better

information + control
control

sync. layer sync. layer

transmitter receiver

transport layer

lower layers

transport layer

lower layers

application application
dropped by the transmitter (there is an indication in the
received IU), or lost in the network.

4.2 Time Behavior Considerations
The synchronization layer assumes the existence of
higher layers to read or present data (fig. 1). At the
receiving end they are modeled as introducing only a
delay and a corresponding jitter, i.e., the IUs to be
presented are delivered to the higher layers
synchronously. At the transmitter end they are modeled
in two ways: a synchronous model similar to the one for
the receptor; or an assynchronous model, for blocks of
IUs to be read from a disk-like device. In this latter case,
data is requested by the synchronization layer when
needed and the device tries to deliver it in a limited time
interval.

Figure 1. Communication process.

The synchronization layer uses the transport layer
services. The transport protocol should be connection
oriented as the data is to be transmitted continuously.
The protocol may have rate control and error detection
but should not have error recovery or flow control, such
as XTP [21]. Another good solution is to use the place
holders offered by RSVP [23] to put the synchronization
information produced by the algorithms. As XTP was
not available, a trivial connection establishment and
termination mechanism was implemented over UDP.
The disadvantages were the overhead caused, at
transmission, by the address resolution procedures (and
bandwidth used by the addresses in the packet), and the
inexistence of rate control.

An important concept is the one of a presentation
instant, the instant when an IU should be delivered to the
higher levels. Some other presentation instants can be
defined, such as the real presentation instant (when the
output is really performed) or the expected presentation
instant (when the output should be really performed).
These concepts will not be considered because they are
difficult to relate to the algorithms defined. The
presentation instant of the nth IU, tp(n), in terms of the
period T(n) is given by:Error recovery mechanisms can cause indiscriminated

retransmission of data when there are losses due to
congestion or traffic policing. This is not a good feature
for multimedia data (see below). This is the reason why
the use of TCP is not acceptable in this cases. TCP has
also the disadvantage of using a go-back-n
retransmission scheme, that causes the transmission of
redundant data. Nevertheless, if possible, a
retransmission should be attempted in case of error,
because it is important to present as many IUs as possible
(it is a QoS parameter). This means that a conditional
retransmission mechanism can be an adequate solution
for multimedia transmission.

tp(n) = tp(n-1) + T(n)

It was already said that intervals are used instead of
instants. Thus a valid presentation instant is any point of
the interval:

[tp(n), tp(n) +]

The value is the presentation instant tolerance and
depends on the media device (or the application). In the
audio case the (minimum of the) value is given by:

 = buf - p

where buf is the audio time buffered in the device (or
application) and p the time taken to "present", i.e.,
approximately the time taken to copy the information to
the device buffer. For the video, is the maximum
acceptable presentation jitter of a frame (a QoS
parameter).

A late IU (an IU that arrives after its presentation
interval) is as good as if it was lost. So, the first
condition to attempt a retransmission is the existence of
time to get the IU before its presentation interval. The
second condition is the inexistence of network or CPU
heavy loads (this detection is analyzed below). The
evaluation of the existence of time is given by:

4.3 Intramedia Mechanisms at the Receivert + decho < tp(np) + (n - np) x T(n)
This section describes the intramedia algorithm, with
special focus on the mechanisms at the receiver (i.e., the
main part of the algorithm). The mechanisms used to
control each of the problems referred in section 2 are
described in that same order. A stronger mechanism --
reset -- is described. It is used when serious situations
with a total loss of synchronization happen. The
differences between the running modes, "interactive" and
"non-interactive" are also depicted.

where t is the present instant; decho is an estimation of
the average round-trip delay based on the measures done
with the ECHO packets; np is the number of the IU to
present next; n is the number of the lost IU; tp(np) is the
presentation instant of the unit np; and (n - np) x T(n) is
an estimative of the time until tp(n) (T(n) is the period
correspondent to the current IU, that serves as an
estimation of the T corresponding to the next IUs (T can
change if the IU size changes)).

The problems to be solved are in increasing order of
seriousness: (a) transmission jitter; (b) transmitter andThe receiver knows that an IU was lost when it receives

a subsequent one. The lost IU can either have been

receiver clocks skew; (c) instantaneous heavy loads; and
(d) non-instantaneous heavy loads. ! "= + × ×

#S T Navg 1
2

The problem (a) is neutralized using the standard
procedure of pre-fetching [1, 4, 17, etc]. The pre-fetch
time value is equal to the sum of the transmission jitters
introduced by the network and the transmitter. This
value is adjustable, causing a better or worse presentation
probability. In systems working in "non-interactive"
mode longer pre-fetch intervals are acceptable.

and
! = ×P T

being P the number of IUs pre-fetched and S the skew.
An average of the two principles gave good results in
practice.

There are three ways to correct the skew:
The problem (b), skew, causes a systematic delay or
advance in relation to the "expected". A non-
instantaneous heavy load, (d), causes a delay to several
consecutive IUs. Although these two effects are very
different in nature, it is not simple to detect and
distinguish them due to the influence of delay jitter.

(1) Adjusting the presentation clock frequency to the
reception rate (equal to the transmitter frequency).

(2) Adjusting the transmitter clock rate to the one of the
presentation, using control messages sent by the
receptor (packet CHNG).

To distinguish between the three problems (a), (b) and
(d), an expected reception instant is defined. This value
is initialized with the first reception instant and the other
ones are calculated summing the period:

(3) Emulating the transmitter clock rate skipping or
duplicating IUs at the receiver.

The second solution was chosen because it is more
adequate for the intermedia synchronization case, for
which an adjustment of the transmitting rates of all the
transmitters to the receiver rate avoids the existence of
skew between the streams. The packet CHNG is used to
instruct the transmitter.

trexp(n) = trexp(n-1) + T(n-1)

The average of some consecutive values of the difference
between the reception instant and expected reception
instant, dif, is used to make the distinction:

A good value for the rate correction could be obtained
using linear regression, but it is too CPU time
consuming. An acceptable but not very exact correction
can be calculated with a simpler formula:

dif(n) = tr(n) - trexp(n)

If the average belongs to [,] or to [- ,] a "false
skew" is detected, i.e., an effect that may be just a jitter
that affects several IUs or a small skew (fig. 2). If avgdif

]] or avgdif - a skew is detected. This
distinction between skew and "false skew" will be used to
define two levels of corrections. If the average is bigger
than a value the existence of heavy loads is assumed
(no negative values are considered because a heavy load
cannot accelerate an IU arrival). If avgdif]- , [no
action is done because the difference of the values in
relation to 0 is considered just jitter.

$f signal avgdif
avgdif

Navg
= # ×

#
()

"

A correction to the transmission instant (the beginning
of the corresponding interval) is also performed, to
compensate the offset existent at the moment:

tt = -avgdif
The "false skew" detection is used to avoid this
mechanism to do its job before there is some certainty
about the really existent problem. If a "false skew" is
detected a mechanism similar to the one used for the
skew is activated but just with local (receiver)
implications: a correction is performed on the
presentation and expected reception instants. The value
of the correction is identical to the one used for the
correction of the transmission instant:

skew skew heavy loads

avg dif

false skew false skewjitter

Figure 2. Intramedia effects detection.

The average is calculated with a fixed number of values,
Navg. After a detection, no other test is done before
Navg new values are available, to avoid several
consecutive detections of the same problem without
waiting for the correction action. is defined
considering the maximum jitter allowed. is a value
between and , for example: = (+) / 2. A good
is more difficult to calculate theoretically. Two principles
can be used: to consider the maximum skew allowed;
and to consider the maximum delay so that the IUs still
arrive before their presentation instant. The formulas
used, but not deduced here are (considering a constant
period T):

tp = -avgdif
This value is summed to an accumulator (ac). If this
accumulator gets off some bounds [- ,] it is reset and a
skew correction is performed. On the other hand, the
accumulator is reset whenever a skew correction is
performed. The value for the rate correction is given by
the same formula as before but exchanging for .

The video presentation mechanism is (usually)
asynchronous due to its "low" presentation rate:
maximum of 30 frames per second. So, a correction of

the presentation instant just readjusts the moment the
driver is called. The audio case is more complex because
the rate is too high for the operating system to present
each sample asynchronously. In consequence the audio
devices have an internal clock and a buffer, so a block of
samples (some hundreds, for example) are delivered
simultaneously. A correction of the presentation instant
implies the presentation of more or less samples than the
available. So, samples have to be inserted or deleted. The
solution adopted is to try to detect a silence period and
decrease or increase its duration. If no silence period is
detected, the correction is performed duplicating or
deleting the last samples of some blocks.

talking about discrete load values, so the QoS levels have
to consider two arguments: the levels should be distant
enough to avoid too many degradations to get to the
desired result; they should be close enough to avoid
degradations bigger than necessary.

One last aspect to consider is the reset action.
Sometimes, if a heavy load remains for a "long" time (1
second, for example) the reception buffer can overflow or
underflow in relation to the IU to present. In
consequence IUs are not presented. If this happens a
reset action will be performed. The reset is always
performed by the transmitter but sometimes it is
triggered by the receiver.

About the problem (c), instantaneous heavy loads, the
presentation intervals are supposed to be met by the
algorithm at all times. Nevertheless, the influence of
temporary or non-temporary heavy loads may cause the
reception of an IU after the end of the presentation
interval (or the unavailability of the CPU when the IU
should be presented). In these cases the IU is simply
discarded.

In "interactive" mode the reset maintains approximately
the end-to-end delay and the trade-off is that some IUs
are not presented. In "non-interactive" mode the
transmission restarts at the moment where it was blocked
adjusting all the instants to the new time-scale. So, in
this mode, the reset will restart the presentation where it
was interrupted.

4.4 Intramedia Mechanisms at the TransmitterThe problem (d), non-instantaneous heavy loads, is
controlled using a QoS degradation scheme1. The
objective is to decrease the load caused by the
synchronization and presentation systems avoiding a
total congestion and so allowing the system to go on
working (although with a lower QoS). When a heavy
load is detected a degradation is performed to the
adjacent lower QoS level. If the load goes on being
detected, another degradation is performed and the
situation is repeated until the lowest level (applications
are warned each time in order to take measures). The
inverse mechanism is described in the next section
because it is local to the transmitter(s).

At the transmitter side, the mechanisms are just a
complement to the receiver side. Their functions are (in
increasing order of seriousness):

(1) Clock rate adjustment when ordered by the receiver:
problem (b)

(2) Reaction to instantaneous heavy loads at the CPU:
problem (c)

(3) Reaction to non-instantaneous heavy loads at the
CPU and others pointed out by the receiver, i.e.,
heavy loads at the receiver and network: problem (d).
The increase of the QoS level to the initial values
after a degradation is also made here.The quality of service is dealt with in more detail in

section 6. A first approach for the definition of QoS
levels is just the increase of the size of the IUs. This
scheme can be adequate to decrease the load in the
CPUs, because the period gets bigger and so the constant
processing time operations are realized less times per
time unity. This was tested mainly with audio because
M-JPEG was used for video and its IUs were already
bigger than network packets. The network load is not
affected but usually the video throughput is much higher
and maintaining the audio quality is more important.
The CHNG packet is used to set the new QoS level.

When the receiver detects a skew, it sends a CHNG
packet to the transmitter to change its rate, (1). This
action is performed changing the transmission period. A
practical difficulty found is caused by the granularity (or
precision) of the system call used to "sleep" after each
cycle of operations -- the Unix usleep instruction. This
granularity (10 ms for this instruction) causes that a
small correction made to the period has only an average
effect: the period between each pair of IUs remains the
same, except for one pair once in a while. This causes a
considerable skew that can seriously prevent the receiver
from detecting the really existent problem: jitter, skew
or heavy loads. The solution used is to accept this effect
but to send in the (first packet of each) IU the shift in
relation to the desired transmission instant. The receiver
subtracts the shift when it calculates the difference dif.
Each time consecutive corrections sum the granularity of
usleep a real correction is performed.

The values of the QoS levels should have a relation to
the heavy loads that can affect the system. For example,
if only four levels of heavy loads can affect the system,
four QoS levels should be defined so the performance of
each one of them could control the effects of the
corresponding heavy load. In practice there is no sense in

The reaction to instantaneous heavy loads, (2), is similar
to what happens at the receiver side. There is a
transmission instant for every IU and a tolerance, tol, to
define the corresponding interval. The mechanism is

1Applications establish connections by stating the
desirable QoS and some acceptable lower QoS levels.
This is ouside the scope of this paper.

triggered when the synchronization level does not
manage to transmit the IU after the end of the interval.
In "interactive" mode the IU is discarded, i.e., not
transmitted. The next IU transmitted will carry an
indication of this action. In "non-interactive" mode a
higher latency is acceptable so a longer tolerance is
defined, tol1. The violation of this tolerance causes the
IU discarding, as for the "interactive" mode.

5. INTERMEDIA SYNCHRONIZATION
The objective of intermedia synchronization is to keep
intrinsic time relations between two or more media.
Some media may need a "strict" intermedia
synchronization, such as lip-sync between the audio and
the video of a film, or just a "loose" synchronization, in
the case of the sound-track of a movie about nature. This
kind of synchronization has to treat the skew and drift
between transmitters and the initial reception mismatch
if the propagation delays are different, (e).

If Navg consecutive violations of the tolerance tol (in
both modes) are detected, the existence of a CPU heavy
load is assumed, (3), and a transmitter lead QoS
degradation is performed. If several IUs transmission
instants are missed the reset procedure explained early
for both modes is due.

Intermedia synchronization can be thought as a layer
that uses continuous channels given by an intramedia
synchronization layer. So, intramedia synchronization is
done in every channel (fig. 3).

The QoS recuperation operation is not simple to perform
at the convenient moment because it is not easy to detect
when a heavy load finishes. The solution adopted is to
use a timeout. The timeout value has to consider both the
average heavy load duration and the number of levels
defined. As this is not possible to estimate, a reasonable
value had to be determined in practice. Each time there
is an interval without further degradation, the QoS level
is increased until it reaches the initial level. This
mechanism is local to the transmitter and no action is
taken by the receiver, except if the application requests a
QoS level change directly.

For "interactive" applications there is little room for
intermedia synchronization because all streams must
meet the real time. Experiences have proven that
independent intramedia in each stream solves the
problem, if all clock rates are synchronized to a single
one (section 4).

For "non-interactive" applications intramedia
synchronization can make the presentation smother with
regard to the problems. The trade off is the extension of
the presentation time in relation to the real duration of
the media. One stream is considered to be the master
and the other(s) the slave(s). The master transmission
rate is always adjusted to the presentation by the
intramedia algorithm (the master should be a media with
more strict QoS values, usually the audio). For the slave,
the rate is adjusted only when necessary, i.e., the
intramedia rate adjustment mechanism (used to correct
the skew) is disabled (the "false skew" corrections are
still enabled as they are local to the receiver). So it is
possible to define a mechanism that acts on the slave(s)
transmission rate(s) only when needed, according to the
parameters defined for the QoS. The algorithm is
applied over each slave-transmitter pair (with the master
transmitter and the receiver) so the case of only one slave
is described.

4.5 Automatic Determination of the Parameters
The algorithms described involve several parameters
that have to be calculated for each practical system.
These parameters are: skew and heavy load detection
limits (and), number of values used to calculate the
averages, reception buffer dimensions, transmission and
presentation interval lengths (tolerances).

These parameters are obtained with three sets of values:
(1) system characteristics values such as the maximum
transmission delay jitter considered, the maximum skew,
the network latency and the bandwidth; (2) QoS
parameters values such as the desired latency, the
presentation jitter, and the presentation probability; and
(3) values related to the application such as the IU
length and the period. transmitter

transmitter

receiver

intra-media sync.

inter-media sync.

intra-media sync.

The second and third sets of values are defined when the
applications are designed. The first set depends on the
real system available: hardware, operating system and
network. Some of them, the bandwidth and the latency,
cause direct restrictions to the system performance and
have to be considered before defining the QoS that the
application will negotiate for the connection. The
maximum skew can be defined in advance as a small
value, 1% for example, because an exact value is not
very important. The maximum transmission delay jitter
is a key value because it is used to calculate important
parameters, such as the pre-fetch interval and the
reception buffer dimension. This value is measured
before the beginning of the operation, using the ECHO
packets to measure the round-trip delay.

Figure 3. Synchronization of two media.

A basic principle needed for intermedia synchronization
is the correspondence between the IUs of both channels.
Two corresponding IUs should be presented with an
offset lower than an allowed maximum value (a QoS
parameter). The relative presentation instant of an IU is
derived from a timestamp. There are several formats
possible for the timestamps. They can have a time

format (microseconds, milliseconds, etc) or a non-time
format (a packet number, an IU number, etc). The
format chosen for IUs with constant length was the IU
number because the time interval of an IU is known and
it can be represented with a small number of bits (one
byte for example). If the IU length is variable, the
timestamp unity is the maximum divider of the possible
lengths.

which influence the overall performance. The direct QoS
parameters are: (1) presentation jitter; (2) end-to-end
delay; (3) presentation probability; (4) temporal
distortion; (5) intermedia presentation offset.

The indirect ones are the sample rates of video and
audio, the quality of the video compression algorithm or
the coding algorithm for audio. These parameters are
related with the QoS levels and are most of the time
constrained by the hardware. Their influence to the
overall system will not be discussed here and will be
subject of a future report.

To maintain the intermedia synchronization the
algorithm must keep the reception instants within certain
bounds. So, the measure of synchronization (for each
slave channel) will be the average of the difference The presentation jitter, (1), is not limited because of the

non-deterministic delays the operating system can
introduce anytime before an operation. The same
approach as for the network jitter was used: set the value
equal to the presentation interval and accept a probability
of violation. In general terms, this value should be long
enough to maximize the presentation probability, and
small enough so the overall jitter is acceptable. A good
compromise was obtained with a 20 ms interval: the
probability was high and the jitter not noticeable.

dif1 = tr(ns) - tr(nm)

where tr(nm) and tr(ns) are the mapped reception
instants of the master and the slave. dif1 is calculated for
each IU arrived on the slave channel. The average is
calculated over the last Navg1 values.

avg
dif1

Figure 4. Intermedia effects detection.

The end-to-end delay, (2), can be proved to be
maximized by:

The algorithm is similar to the intramedia one (fig. 4) in
the sense that it acts according to threshold values of the
average: lmax = dmax + dp + da +

(1) If the average is small but bigger than , |avgdif1| %
[,&], there is the danger of violating the maximum
allowed offset. So a delay or advancement of the
slave presentation has to be performed. This also
means to decrease or increase the presentation
instants.

where dmax is the maximum transmission delay; dp is
the pre-fetch interval; and da is the delay between the
presentation instant and the real presentation. Assuming
a 50 ms pre-fetch interval and = 10 ms a maximum
latency of 82 ms was calculated. This value is very good
both to "interactive" and "non-interactive" systems. For
systems such as video-conference 150 ms is usually
considered a good value.(2) If it is higher, |avgdif1| , there is a violation of the

maximum offset or IUs are not presented. So, a reset
has to be performed: the whole presentation is
delayed, and the offset is reset to 0.

The presentation probability, (3), is highly influenced by
the system load. 100% values were obtained without
heavy loads and values as low as 0% were obtained with
very heavy loads.The meaning of the parameters and is deduced from

the statements above: is the maximum acceptable
offset value; and is a smaller value that means a
danger of violating the maximum offset.

Temporal distortion, (4), exists due to the difference of
clock rates at the transmitter(s) and the receiver (real
rates, the nominal ones are always the same). The values
obtained are not detectable due to the very low
difference. To achieve intermedia synchronization it was
accepted as a principle that every media is captured at
the same rate. The presentation rate may be (slightly)
different. The video presentation mechanism is (usually)
asynchronous so it poses no problems (v. 4.3). The audio
presentation is synchronous (v. 4.3). So, the different
clock rates implies that the number of IUs delivered to
the device to be presented will be played during an
interval slightly longer or shorter than the desired one.
This effect can be neutralized by the receiver, inserting
or deleting a few samples from time to time. This
procedure is independent from the algorithms and must
be performed by the receiver before the algorithms get
the data. This number is easy to calculate given the
difference of the rates. The operation can be done as
referred in 4.3.

A less important intermedia mechanism is related to the
different average transmission delays of each stream,
caused by the existence of routers, bridges, etc. Some
ECHO packets are sent before the transmission of data
and the answers collected to make an estimation of the
round-trip delays. Afterwards, an order to the
transmitters to begin the transmission is sent. The orders
are sent considering the delay differences so that the IUs
from the different transmitters will start arriving
approximately at the same time maintaining the filling
level of the buffers balanced.

6. QUALITY OF SERVICE
It should be clear now that there are two types of QoS
parameters: some direct ones handled by the algorithms;
and some indirect ones, at the level of the application,

The objective of intermedia synchronization is to keep
the intermedia offset within bounds, (5). [20] determines
a maximum value of 80 ms for this parameter for the
case of lip-sync. Two mechanisms were given for
"interactive" and "non-interactive" systems. For
"interactive" systems, the offset is limited by the imposed
maximum presentation jitter (given by tol). For "non-
interactive" systems, intermedia synchronization
guarantees that this parameter does not get off an
interval [- . So has to be defined in accordance.

-2

0

2

4

6

8

10

12

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

IU num ber

di
f (

m
s)

7. EXPERIMENTAL RESULTS
This section presents three examples that show the main
features of the algorithms. The first two are intramedia
synchronization examples of an audio stream transmitted
between two workstations. The third shows intermedia
synchronization. The distributed system included three
Sun Sparc 10 workstations with Sun OS 4.1.3 and a
LAN ATM network (thus, with a very limited jitter). The
audio stream used is a speech sampled at 8KHz (ulaw).
The QoS degradations are performed simply by IU size
augmentation. The initial IU size is 50 ms (400 bytes)
and the maximum size allowed is 150 ms, with a 20 ms
variation. The experiments where made in "non-
interactive" mode with a pre-fetch value of 3 IUs.

Figure 5. dif(n) chart

0

2

4

6

8

10

12

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

IU num ber

co
rr

ec
tio

n
(m

s)

7.1 Experiment 1
The first experiment shows the system normal operation
under an imposed considerable skew. The parameters'
values used were = 2 ms, = 10 ms and = 20 ms. 10
values were used to calculate the average. The sound
quality obtained was very good.

Figure 6. Chart of the corrections made in the receiver
(lower than 10 ms) or in the transmitter (higher than 10

ms).
The value of dif (fig. 5) starts to increase influenced by
the skew. After some time, around IU number 30, the
skew is detected as the average of dif crosses and a
local correction is made (fig. 6). The correction is local
because it is detected as a "false skew", i.e. the receiver is
still not sure that there is a real skew. There are some
spikes (high delay values) caused by some network or
machine effect.

7.2 Experiment 2
The second experiment shows the influence of a heavy
load at the receiver. The problem happened around IU
number 50 caused by the beginning of several CPU time
consuming programs that display charts.

The local correction does not change any rate so the
influence of the artificial skew remains. So, the value of
dif continues to increase. Around IUs number 150, 200
and 250 the skew is detected again and local corrections
are made.

The problem caused some correcting reactions:
instantaneous heavy load corrections (some IUs are
discarded) and QoS degradations (fig. 9). It also caused
some wrong reactions like "false skew" and skew
corrections (fig. 8).

Around IU number 300 the receiver detects the skew
again. This time it considers the existence of a real skew
because the sum of the corrections already made (stored
in the accumulator ca) with the one that would be done
this time, is higher than . So a correction is made to the
transmitter rate.

Near IU number 60 a heavy load was detected and a QoS
degradation was made. Some time after the transmitter
decides to try to bring the QoS to the initial values. The
attempt was made too early and some milliseconds later
another degradation is performed. The transmitters does
the same thing again and the receiver manages to keep
the QoS for about one second (around IUs 80 to 100).
Then it performs another degradation and a little later
another one. After the end of the heavy load the systems
gets stable and the QoS returns to the initial values.

After this remote correction, the influence of the skew is
lower, but it is still felt. This is a consequence of the
formula used for the corrections not being very good (as
mentioned above). Nevertheless the problem gets better
and after some future corrections it gets really small.

-20
0

20
40
60
80

100
120
140
160
180

1 51 10
1

15
1

20
1

IU num ber

di
f (

m
s)

slave transmitter to test the algorithm. The method was
the same as for experiment 1. This skew was introduced
as an initial period greater than the nominal one (50 ms).

The experiment consisted of playing the same piece of
audio from two different workstations. If one of them
gets behind, the voice pitch changes. If the difference
gets bigger echo is noticed. During the experiment some
changes on the pitch were felt but this was expected as
the audio is the most sensitive media towards these
synchronization problems.

The intramedia algorithm is applied to the master stream
normally. Around IU number 130 a local correction is
made (figs. 10 and 11). The intramedia algorithm for the
slave stream has the "false skew" and skew corrections
disabled: the rate adjustment is made in relation to the
master stream by the intermedia algorithm.Figure 7. dif(n) chart

-8
-6
-4
-2
0
2
4
6
8

10
12

1 51 10
1

15
1

20
1

IU num ber

co
rr

ec
tio

n
(m

s)

The intermedia difference dif1 increases influenced by
the skew (fig. 12). When its average crosses , around
IU number 220, the skew is detected and a correction to
the slave transmitter period is performed (figs. 12, 13
and 14). The skew influence gets lower, as seen in the
second "section" of fig. 12, but its influence is still felt
and another correction is made around IU number 490.
As referred for the intramedia case, the skew influence
takes some time to disappear.

-3
-2
-1
0
1
2
3
4
5
6
7

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

IU num ber

m
as

te
r's

 d
if

(m
s)

Figure 8. Corrections chart (see fig. 6)

0
10
20
30
40
50
60
70
80
90

1 51 10
1

15
1

20
1

IU num ber

IU
 s

iz
e

(m
s)

Figure 10. master's dif(n) chart

-2,5

-2

-1,5

-1

-0,5

0

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

IU num ber

m
as

te
r's

 c
or

re
ct

io
n

(m
s)

Figure 9. IU size chart (QoS degradation)

7.3 Experiment 3
The last experiment shows intermedia synchronization.
The intramedia parameters values used were the same as
before and the inter-media parameters were: = 10 ms
and = 60 ms. The number of samples used to calculate
the average dif1 was 10. There was a considerable
transmitter-transmitter skew introduced artificially at the

Figure 11. Chart of the master's intramedia corrections
(the correction is local because it is lower than 10 ms)

asynchronous network. The algorithms synchronize
information streams using reception times and take into
account real-life problems such as heavy loads on the
machines and network. There are different mechanisms
of correction actions depending on the severity of the
problem. The two modes of operation, "interactive" and
"non-interactive" make the algorithms suitable for a
large range of applications, from video-conference to
video-on-demand and cooperative work systems.

0
2
4
6
8

10
12
14
16
18

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

IU num ber

di
f1

 (m
s)

The use of the average of the differences of reception
times, tr(n) - trexp(n) and tr(ns) - tr(nm), gives a good
and easy to calculate measure of the effects involved but
deserve some discussion. Averages are used in spite of
singular values because values are affected by several
effects, such as jitter, that can mislead any quick
correction. The number of values to be considered for the
average has to have several aspects in mind. If just a few
values (2 or 3) are used, the algorithm gets too sensitive
reacting to almost any variation on the values. If a large
number is used, the problems will take too long to be
detected and corrected, causing, for example, the lost of
some IUs.

Figure 12. dif1(n) chart

0

2

4

6

8

10

12

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

IU num ber

sl
av

e'
s

co
rr

ec
tio

n
(m

s)

The relation between high-level concepts and low-level
ones is not constrained by any static correspondence, as
opposed to [13]. The algorithms were originally designed
to work with a high-level synchronization system [14, 2]
that can define blocks anywhere in the stream (eg., when
the word "hello" is spoken, each time a blue car passes).
Blocks can be composed with other blocks from other
streams and the QoS can vary from block composition to
block composition according to the high-level
synchronization. The low-level algorithms explained
here can support this paradigm entirely and the only
thing needed is to be able to change and during the
call, when the stream passes from one block to the next.Figure 13. Chart of the corrections made to the slave

caused by the intermedia algorithm (the corrections are
made to the transmitter period) There are still some features that will be addressed in the

near future:

50,005

50,01

50,015

50,02

50,025

50,03

50,035

50,04

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

IU num ber

sl
av

e'
s

pe
rio

d
(m

s)

• The correspondence between the indirect QoS
parameters, the direct ones and the QoS levels,
together with an assessment of the system
characteristics and performance.

• The introduction of some sensor on the error rate
(mainly due to network policing) in order to influence
the QoS. The current QoS is only influenced by
temporal synchronization features.

• The definition of the full interface offered at
synchronization level to drive the algorithms taking
into account the two issues above.

• The integration with the high level synchronization
system described in [2] will be done.

Figure 14. Chart of the slave transmitter period (fig. 13) • The synchronization of MPEG streams is not so simple
as for sequences of JPEG images or sound. The
selective discard mechanism has to consider that a loss
of a single I frame can cause a serious QoS problem.

8. DISCUSSION AND CONCLUSIONS
This paper presents intramedia and intermedia
synchronization algorithms for multimedia distributed
systems with non-real time operating systems and an

The QoS degradation scheme has to discard preferably
B, P and lastly I frames.

multimedia applications, Open Distributed
Processing, II, Editors J. de Meer, B. Mahr and S.
Storp, IFIP Transactions, North-Holland (1994)

• An interesting case not considered is the adaptation to
multicast algorithms. 15. Pinto, P., Bernardo, L., and Pereira, P., A

Constructive Type Schema for Distributed
Multimedia Applications, Boadband Islands '94
(1994)

• Another aspect to explore is the feedback used to adjust
the slave transmitter period. A better quantitative
analysis can be done with the help of distributed
control techniques. 16. Qazi, N., Woo, M. and Ghafoor, A., A

Synchronization and Communication Model for
Distributed Multimedia Objects, ACM Multimedia 93
(1993)

REFERENCES
1. Anderson, D. and Homsy, G., A Continuous Media

I/O Server and Its Synchronization Mechanism,
IEEE Computer (October 1991) 17. Ramanathan, S. and Rangan, P., Feedback

Techniques for Intramedia Continuity and Intermedia
Synchronization in Distributed Multimedia Systems,
Computer Journal, vol. 36 nº1 (1993)

2. Bernardo, L. and Pinto, P., Sharing Multimedia
Information: a Basis for Assisted Remote Training,
Boadband Islands '95 (1995)

18. Shepherd, D. and Salmony, M., Extending OSI to
Support Synchronization Required by Multimedia
Applications, Computer Communications (September
1989)

3. Correia, M., Multimedia Intrinsic Synchronization in
Distributed Systems (in Portuguese), MSc Thesis,
Instituto Superior Técnico, Lisboa, Portugal (June
1995)

19. Stefani, J., Hazard, L. and Horn, F., Computational
model for distributed multimedia applications based
on a synchronous programming language, Computer
Communications (March 1992)

4. Dairaine, L., Drift Matching Techniques for Time
Signature Conservation Service, Broadband Islands
'94 (1994)

5. ETSI, B-ISDN ATM Adaptation Layer (AAL)
specification - type 1 (January 1994)

20. Steinmetz, R. and Engler, C., Human Perception of
Media Synchronization, IBM ENC Tech. Rep. n.
43.9310, Heidelberg (1993)6. ISO/IEC DIS 11172, Information Technology -

Coding of moving pictures and associated audio for
digital storage media up to about 1,5 Mbit/s (1992)

21. Strayer, W., Dempsey, B. and Weaver, A., XTP, The
Xpress Transfer Protocol, Addison Wesley (1992)

7. ISO/IEC 1/SC 29/WG 12, Information Technology -
Coded Representation of Multimedia and
Hypermedia Information Objects (February 1993)

22. Talley, T. and Jeffay, K., Two-Dimensional Scaling
Techniques for Adaptive, Rate-Based Transmission
Control of Live Audio and Video Streams, ACM
Multimedia 94 (1994)8. Li, L., Karmouch, A. and Georganas, N., Real-Time

Synchronization Control in Multimedia Distributed
Systems, ACM SIGCOM / CCR (July 1992)

23. Zhang, L., Braden, R., Estrin, D., Herzog, S. and
Jamin, S., Resource Reservation Protocol (RSVP) -
Version 1 Functional Specification, Internet Draft
(July 1994)

9. Li, L. and Georganas, N., MPEG-2 Coded- and
Uncoded- Stream Synchronization Control for Real-
time Multimedia Transmission and Presentation over
B-ISDN, ACM Multimedia 94 (1994)

10. Mey, V. and Gibbs, S., A Multimedia Component Kit
ACM Multimedia 93 (1993)

11. Mills, D., Network Time Protocol (Version 3).
Specification, Implementation and Analysis, Internet
RFC 1305 (March 1992)

12. Newcomb, S., Kipp, N., and Newcomb, V., The
HyTime: Hypermedia/Time-based Document
Structuring Language, Communications of the ACM
(November 1991)

13. Nicolaou, C., An Architecture for Real-Time
Multimedia, IEEE Journal on Selected Areas in
Communications, vol. 8 nº3 (April 1990)

14. Pinto, P. and Linington, P., A language for the
specification of interactive and distributed

