
Integrated Dynamic QoS Control for Multimedia Applications

João Bomb, Paulo Marquesb, Miguel Correiac, Paulo Pintoa,b

aInstituto Superior Técnico, Av. Rovisco Pais, P-1000 Lisboa Portugal
bINESC, R. Alves Redol, 9 P-1000 Lisboa, Portugal

cUniversidade de Lisboa, Faculdade de Ciências, Campo Grande, Bloco C5, Piso 1, 1700 Lisboa.

ABSTRACT

This paper presents an algorithm to control QoS for distributed multimedia applications. The algorithm approaches
the problem in an integrated way solving both the problems of the network bandwidth and the load at the workstations. It
interacts with the applications by an abstract sequence to describe values for QoS that are more meaningful to application
programmers than the low-level entities such as cell loss rate, throughput, etc. Some experimental results of the algorithm
are presented.

Keywords: Quality of Service, Distributed Multimedia Applications, Real-Time Transport, Adaptation Algorithms

1. INTRODUCTION

Distributed multimedia applications start already to appear in our working (and leisure) environments. However,
they still use highly homogeneous networks, equipment and encoding algorithms. It is not hard to predict that this
restriction will soon be overcome, but it is important to assure that the generalization will not be intrinsic to the
applications, in order to keep them simple and easy to build. I.e., the core of the application (the functional part) must be
shielded from the problems of adaptation to networks, or the evolution on encoding algorithms. Ideally, a multimedia
application can grab as much machine power or network bandwidth as it can get. Therefore, the core must be programmed
as if these resources were infinite and have adjusting mechanisms performed externally and in a media, and network,
independent way to indicate a limit somewhere. Then, applications will work with the maximum conditions they can get at
the moment in terms of operating systems and networks, and will be prepared to survive technological advances.

The concept of Quality of Service (QoS) can play a major role in the overall process involving the application and the
adjusting mechanisms because it can be made abstract enough to handle different kinds of problems. However, it is
important to find: (a) application meaningful concepts for the parameters that influence the performance (typically, bit error
rate, or call establishment latency are of little relevance to applications); and (b) the dynamics of the adjusting mechanism
to always get the best of what the user is willing to have.

This paper is concerned with distributed multimedia applications using broadband networks, and with the control of
the QoS when the dynamic conditions of the connection can vary substantially. A basic aspect of QoS when the network
conditions are fairly stable was already done6 and it covered the maintenance of low-level intramedia and intermedia
synchronization for continuous streams. Basically, it was important to control jitter and skew, and detect temporary network
congestion or machine loads. However, at such low-level it is difficult to decide what are the best choices when the
operating conditions change greatly. Specially because they are very application dependent.

New multimedia applications produce variable bit rates due to various reasons (the algorithms themselves, or extra
techniques such as silence suppression on audio), so they fit well on variable bit rate network services. The ATM technology
provides a good networking solution for these requirements but creates a scenario where dynamic operating conditions can
happen easily. When setting up a connection the reservation of the maximum bandwidth is too costly and corresponds to a
bad use of the network resources. Most of the times, the connection traffic parameters are set to slightly greater values than
the ones produced by the encoders. This creates a safety margin to prevent anomalies. However, most of the Call Admission

. {joao.bom,paulo.marques,paulo.pinto}@inesc.pt mpc@di.fc.ul.pt

Control algorithms are conservative1 and some network resources are just never used. Depending on the UPC mechanism at
the network interface, users can overpass the contracts of the connections and use network resources without a guarantee.

If the application wishes to exploit the statistical nature of the network and tries to improve the quality of service by
going over the connection traffic contract, the operating conditions will even get more dynamic. Not all applications can
behave this way, of course. They have to handle most of the situations they can incur by using non-guaranteed conditions
(errors, loss of synchronism, etc.). The point is that this exploitation of unreserved network resources can use the same
technique of the adjusting mechanism introduced above.

This paper describes an integrated application-transport control algorithm to adapt the application and take
advantage of these spare resources. The transport part of the algorithm is in some sense transparent to the application. The
application simply defines the possible values of QoS each media can take and the events that it wants to have knowledge of
(for example, minimum video quality reached).

The algorithm changes the bandwidth used by the application by changing the quality of one or more of the media
being sent. If, on the other hand, an application repeatedly tried to process more data than the available bandwidth and end
systems capacity the overall performance would be lower than what it could be if the requirements were more realistic. That
is the reason why the amount of data being sent, and in consequence the quality of the media, should be adjusted to the
capacity of the overall system.

The novel parts are that the algorithm takes into account in its control loop the operating conditions on both
machines, and not only the network situation; and that it operates based on an abstract range of severity levels making it
suitable to adapt to various types of media encoding. I.e., applications provide a range of different acceptable operating
conditions together with their encoding dependent solutions to the variations of these conditions, in order to enable the
algorithm to exercise its control autonomously (as long as it stays within the range).

2. ARCHITECTURE

This section discusses some issues related to transport protocols for continuous media and ATM network technology.

2.1. Transport protocol

Traditional transport protocols, such as TCP, have already too much assumptions in relation to the semantics of the
data and the network. TCP is not suitable for continuous media for several reasons: it imposes its own transmission rhythm
to the media being sent when it should be the application doing so; it imposes the correct deliverance of the data making use
of retransmission but it could be acceptable to tolerate some losses but no retransmissions; the congestion control acts
drastically when a missing segment is noticed never assuming that an error could have occurred. On the other hand these
protocols work and make decisions on abstract portions of data (data units) with little relevance to the application.

New generation transport protocols, such as RTP9, outcome most of the previous limitations: they are based on the
concept of Application Level Framing5 (ALF) working on data units that are relevant to the applications, and integrate their
processing with the application own processing5 (Integrated Layer Processing). Moreover, RTP has an associated control
protocol -- RTCP -- to assess the network conditions but does not impose any pre-defined algorithm to work on the control
data. RTCP basically sends reports from the sender to the receiver and vice-versa. These reports have information about the
packet loss, received and transmitted rates and delay jitter, that can be used by the applications to take decisions.

We used the RTP protocol in our experiments but it is more important to highlight these characteristics as being vital
to the transport layers of multimedia applications than to study the particular case of RTP. In fact, we felt the need to add
some information to the RTCP control packets. The standard information is simply related with the network and it is also
relevant for the QoS control to have some knowledge of the local behaviour of the applications (specially as seen by the
receiver machine).

2.2. ATM

It was stated at the introduction that the application will use non-guaranteed network resources, as a means to
improve quality without the expenses of a guaranteed scenario. One alternative is to use the Available Bit Rate (ABR) class
of service of ATM. However, there are several reasons why this is not suitable for multimedia: the ABR was designed to
serve data applications that can use spare bandwidth. Data applications can typically adapt to varying conditions on the
network but an important factor is that cell loss should be as low as possible (data applications are rather sensitive to
information loss). Therefore, ABR has its own control cycle to govern bandwidth and prevent loss situations. The
multimedia case is different: the adaptation to different bandwidth conditions is a slow process; some losses can be tolerated
in the process, although, of course, they are not desirable; and the ABR control loop will behave strangely to multimedia
because it is based on cells which are not a multimedia abstract concept (the same problem as the approach of traditional
transport protocols described above).

The natural choice is to use Variable Bit Rate (VBR) class of service, and use priorities to work over contract values.
The application sets a lower limit of bandwidth for the connection, below which it is useless to maintain the interaction.
Then tries to raise the quality by using CLP=1 cells as much as the network can handle. We assume that the UPC/NPC
mechanism uses cell tagging until the Peak Cell Rate (PCR) value and discards cells above this rate. Therefore, a video
connection, for instance, should set the PCR in accordance to a frame length, but can set the Sustainable Cell Rate (SCR)
lower than the actual value it intends to use (and just to cover the minimum limit).

3. END-TO-END CONTROL ALGORITHM

QoS in multimedia has a slightly different meaning than the traditional concept in the OSI model8. Although both
end up to values and rates of cell loss, throughput, delay, etc., it is difficult to relate the relative importance of these entities
to the overall multimedia quality. A multimedia application user has a subjective assessment of the data he is watching and
listening to. Therefore, it is very difficult to get lower level information such as the one listed above from the user. The
control unit should rely on higher level information and a scale, the range of operating levels explained above, fits this
objective. The user can express his intentions in terms of video frame rates, quality factors, audio sampling rates and
encoding quality, etc.

The control algorithm works in two main areas: QoS monitoring and QoS control. The aim of the first is to observe
the working conditions, whereas the second acts to adjust the system towards a new stable condition when problems happen
or disappear.

This section describes our proposes to handle these two issues: QoS monitoring (3.1) and QoS control (3.2).

3.1. QoS monitoring

QoS monitoring works as an end-to-end closed control loop based on the RTCP reports. Both the sender and the
receiver should send RTCP reports but only the reports sent by the receiver are considered. So, the algorithm is executed
exclusively in the sender.

The algorithm is cyclic and reacts each time an RCTP receiver report packet is received by the sender (see figure 1).
Monitoring looks both at the network level QoS parameters (e.g., cell loss, jitter) and application level QoS parameters (e.g.,
number of discarded frames at the receiver due to machine overload). In order to have the latter information, the control
packets had to be extended with the following two fields (the extension feature was considered in RTCP by the inclusion of
profile-specific extensions):

• too_late – indicates the number of frames dropped by the receiver due to a delay that prevented them to arrive
before their presentation time.

• nshown – indicates the amount of frames discarded by the receiver due to machine overload, i.e., frames that
were received in time to be presented but that were not presented because the process that should perform that
action did not get active in time to do it. This is a consequence of not using real time operating systems.

 All these indicators must be assessed in relation to the sampling rate. Obviously, it is more relevant to lose one frame
at 5 fps than to lose one at 20 fps, in the video case. The sampling rate, as it will be described in the next section, can vary
during the connection time.

 3.2. QoS control

 The QoS control algorithm works at three stages: the first two more autonomous and the other more guided by the

application.
 The first stage is used as a first approximation to a problem. The idea is to assume that the problem is transient and

some data must be dropped. The application provides indications about the semantics to drop data (for instance, an M-JPEG
stream can drop video frames; an MPEG stream can drop small amounts of data (B frames), larger amounts (P frames and
B frames), or large amounts corresponding to a complete sequence (P frames including the first I frame)). The second stage
is used when the first one does not produce results, and the algorithm goes up and down the scale provided by the
application.

 Figure 1 - QoS Monitoring Cycle

 The third stage is entered when these adjusts do not solve the problem and some major decision has to be taken.
Essentially the lowest level of the scale was reached and the problems persisted. The application is informed and decides
what to do. For example, it can terminate the connection or submit a new, less demanding scale for QoS.

 As the third level is more trivial, the rest of the session is devoted to the first two stages.

 The application has to inform the algorithm about the values of QoS the media can take, and its desired initial

conditions. These values are given as a scale of QoS parameters with a number of levels. Each level is expressed in terms of
values of given QoS parameters. For example, a very simple video QoS scale can be expressed in terms of the frame rate and
quality factor (Q) - figure 2.

RTCP

RTPRTP data

RTCP Reports
QoS Algorithm

QoS
Parameters

Sender ReceiverNetwork

 Figure 2. A QoS scale for a video stream.

 The QoS control can change the QoS working level over that scale. It starts at the initial level and can move
downwards or upwards according to its assessment of the working conditions (bandwidth on the network and CPU loads at
the machines involved). These decisions of moving from one level to another will be considered next.

 The control algorithm gets values over which it acts from the RTCP reports. To avoid the influence of possibly
erroneous values and to limit the oscillations on the algorithm, an average of the last values is performed. In the
experiments we used the three past values of the reports for the average. We used the sum of three values -- too_late,
nshown and the frames lost in the network – to calculate the average. This last one is obtained from the number of packets
lost, that comes in the standard part of the RTCP reports. The sum is divided by the length of the period between RTCP
reports. This last value is the one used to calculate the average. It is a value of the (total) losses per second.

 The average value can fall in one of three zones on a scale (see figure 3): the degradation zone (between λs and

100%); working zone (between λi and λs) and improvement zone (between 0 % and λi). The values λi and λs are calculated
experimentally and depend on the data type (media) used.

 Figure 3 – QoS Control Algorithm

 The control algorithm works as follows:

• When the average values fall into the working zone the algorithm acts autonomously. Inside this zone it is
assumed that a reduced part of the information is being continuously lost. For example, for video, discarding a
frame once in a while -- first stage of the control algorithm. These losses are not noticeable to the users and
constitutes the stable stage of the algorithm.

Loss (%)

λsλi

RTCP REPORT BUFFER

Improvement
Zone

Degradation Zone

0 100

Working Zone

fps = 25
Q = 30

fps = 25
Q = 100

fps = 25
Q = 150

fps = 15
Q = 30

fps = 15
Q = 100

fps = 15
Q = 150

fps = 5
Q = 30

fps = 5
Q = 100

max. QoS initial QoS

fps = 5
Q = 150

min. QoS

• When the average values fall into the degradation zone the algorithm moves downwards on the QoS scale
provided by the application to reduce the volume of data. When the system enters into this zone the conditions
changed in such a way that a considerable part of the information has been lost.

• When the average values fall into the improvement zone the algorithm moves upwards on the sequence to try to
use more bandwidth, as the network seems to be accepting the values at the moment. Basically, there has not
been residual losses for a while.

The degradation and the improvement of QoS are not symmetrical in the following sense. A degradation is
performed when there is not enough bandwidth in the network or when there is an excessive CPU load in a machine. The
improvement is not performed in the contrary situation but when degradation situation stopped to be detected. Determining
if there was, for instance, more bandwidth available would require a specific mechanism that would cause extra load in the
machines and use more bandwidth in the network.

The algorithm itself is only aware of losses at the application level, i.e., it does not distinguish between network
losses and local losses due to excessive CPU load in a machine. The reason for this is that the algorithm itself does not have
to know the causes of the losses, it only has to react to them in a way that allows the application to work, even with less than
the initial required QoS.

 3.3. An implementation of the algorithms for MJPEG video

An implementation of the algorithms was executed as part of a videoconference prototype. The algorithms monitor
and manipulate video transmitted in MJPEG format. The two QoS parameters considered for the QoS scale were the
sampling rate and the JPEG quality factor. Figure 3 shows the nine levels defined and used for the experiments. Reducing
the QoS is equivalent to move to the right in the scale. As a principle, the first degradation is the reduction of the sampling
rate and then, the Q factor. This precedence is based on the fact that changes on the Q factor introduce greater load on the
machines than changes on the sampling rate.

 Figure 4. QoS scales used in the experiments.

To improve performance, both the receiver and the sender must be aware, as soon as possible, of the dynamic

changes in the QoS parameters introduced by the QoS control algorithm. This can be done in different ways, but our choice
was to have an explicit indication in every data packet. The decision was made in order to avoid a significant increase in the
overall load across the monitoring cycle. It became obvious that it would be better to waste a few bytes, increasing slightly
the bandwidth used, than to run an algorithm on both the sender and the receiver sides (using the timestamp, etc.) to deduce
the sampling rate.

The indication consists of the sampling rate because the Q factor is already included in the RTP header extension for
MJPEG. This bandwidth increase can be considered residual compared with the bulk of the multimedia data. The
knowledge of the sampling rate by the QoS control algorithm at the sender is important because the above indicators
(nshown and too_late) must be assessed relatively to it (as it was already stated, it is obviously more relevant to lose one
frame at 5 fps than to lose one at 20 fps). Each indicator is evaluated relatively to the sampling rate using the proportion: 1 /
Sampling rate. On the receiver’s side the value for each indicator is computed between the sending of two RTCP packets.
On the sender’s side, each time an RTCP receiver report packet is received, the value of the indicators must be converted to

fps = 25
Q = 50

fps = 22
Q = 50

fps = 19
Q = 50

fps = 25
Q = 75

fps = 22
Q = 75

fps = 19
Q = 75

fps = 25
Q = 100

fps = 22
Q = 100

initial QoS

fps = 19
Q = 100

1 2 3 4 5 6 7 8 9

a base unit in order to compare these values across the cycles with potentially different sampling rates. The base unit will be
the percentage of loss per second.

4. EXPERIMENTS

This section describes three experiments and their respective results. The goal of the experiments is to demonstrate
the algorithm under different network and local machine conditions. The experiments consisted on video images with
movement and some background detail, transmitted from one workstation to another. The video is encoded in JPEG using
Parallax boards. The workstations (Sun Sparc10) are connected by an ATM switch. The threshold values chosen for the
experiments were λi = 5% and λs = 15%.

The RTP standard proposes an algorithm to calculate the interval between consecutive RTCP packets. This algorithm
was designed considering that control traffic should be a small and known fraction of the total used bandwidth. The
algorithm is based on the following principles:

• the interval between RTCP packets must be greater than a minimum time (5 seconds was the value established
by the standard) to avoid having bursts of RTCP packets;

• to automatically adapt to changes in the amount of control information, an estimate of the average RTCP
packet size is calculated and considered in the algorithm.

This interval has a direct consequence on our control loop. We decided to lower the minimum interval to three
seconds. With a value as high as the one established by the standard, the algorithm took too much time to make a decision.
It had to wait at least five seconds to receive a RTCP packet and then make a decision. If the conditions change abruptly,
then three reports have to be received. With such a large interval when the packet arrives the state of the network or the
state of the local machine could have changed, so the practical effects of the algorithm could have been the contrary. Our
minimum value of three seconds was experimentally obtained, and it revealed adequate to the algorithm’s goals.

The RTP was implemented as a user process. There are some inefficiencies due to this option. However, the less rich
results in terms of bandwidth used were not relevant for the purpose of this paper, and can even be considered a good
example of a limitation at the end system workstation.

4.1. First experiment

The purpose of the first experiment (figure 5) was to study the effect of the machine loads on the overall efficiency of
the system. No restrictions were imposed on the network bandwidth and the machines had a constant load throughout the
experiment. We have chosen a unusually large video image and it was needed at least two packets to transport a video
frame. Therefore, a sampling rate of over 20 frames per second is a very high load to the workstations. The figures of all
experiments show the bandwidth really used (higher line) and the filtered (averaged) losses (solid line).

 Figure 5. Results of the first experiment.

The initial level required for the QoS was too high for the system to cope with and losses started to happen. As a
result the QoS level was reduced to the lowest level possible (level nine). At t=35s the system would have gone to an even
lower QoS level than level nine meaning that the third stage of the algorithm would have happened. This part of the
algorithm was not implemented, so the system remained at the lowest level. Anyway, the adaptation process proved to be
too quick and at t=50s the system moved to level eight increasing the QoS. Losses started again to increase and the system
moved again to level nine. The rest of the experiment is a sequence of these attempts as the correct QoS for these conditions
seemed to be somewhere between level eight and nine. Each time there was a QoS increase the bandwidth increased but the
receiver (a slower machine) could not cope with the pace.

4.2. Second experiment

The second experiment had artificial bandwidth cuts introduced on the network. The image size for this experiment
and the next one was smaller than the one of the first experiment. The experiment begins without any limitation on the
bandwidth, and at t=120s the bandwidth was reduced to 300 Kbps. After a while, at t=180s there was another reduction to
250Kbps and another one at t=260s to 200Kbps. After this the bandwidth started to increase to 300Kbps at t=360s and
without limitations after t=420s. Figure 6 shows the filtered losses and the used bandwidth as a function of time. It is clear
where the cuts and increases were performed.

The purpose of this experiment was to show how the algorithm worked if the required bandwidth (to support the
required QoS level) was not available. It is possible to see how the algorithm adjusts and stabilizes under different operating
conditions.

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

Time (s)

L
o

ss
es

 (
%

)

0

50

100

150

200

250

300

350

400

450

500

B
an

d
w

id
th

 (
K

b
/s

)

At the start of the experiment, the initial QoS chosen by the application was clearly less than the current conditions
of the system. The losses went down the lower limit, and there was an increase on the scale until it reached the highest level
(level one) at t=30s. It could even have gone higher. When the first cut was applied losses started to happen and the control
algorithm moved down the scale to stabilize at the fifth level. Before it got stable it went down to the sixth level and
returned to the fifth (around t=160s). The second cut deteriorated the conditions just a little bit and the losses increased but
not very much. The algorithm needed not go down the scale during this phase. When the third cut happened, then a sudden
increase on the losses took place and the algorithm had to go down the scale to level nine. Once again, the algorithm would
have gone lower if it could to try to solve the loss problem quickly. This case is curious because it proved that level nine was
the appropriated one and losses start to go down after a while. At t=290 losses went down the threshold, the algorithm
stabilized and was even near to try to improve a little bit at t=340. At t=360s it started to improve the QoS level and went
until level one.

 Figure 6. Results of the second experiment.

4.3 Third experiment

The third experiment had also artificial cuts on the network bandwidth, but the idea was to cut it drastically and then
it increased and decreased with time. The experiment begins without any limitation on the bandwidth, and at t=100s the
bandwidth was reduced to 150 Kbps. After a while, at t=200s the bandwidth started to increase to 300Kbps and after that to
400 Kbps at t=300s. There was a final cut to 300Kbps at t=350s.

Just like in the previous experiment the initial level was too conservative and an improvement was performed.
Actually there was some disturbance at the beginning and the algorithm went to the sixth level at t=15s before it climbed to
the third level at t=30s (this was due to the arrival of the first RCTP packets). It remained there until t=100s. The stable
level was a little bit too high and the losses increased with time. If the t=100s cut did not happen, probably a correction
would have taken place to go to the previous level (fourth level). As the cut happened, the system went down until it reached
the level nine. Again, the system would have gone to a lower QoS level than this. As this did not happen and the conditions
this time were adverse the losses started to increase. When the bandwidth was increased, the system started to raise in the
scale until it reached the top level (specially because a new increase on the bandwidth was performed). It went very quiclky

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

Time (s)

L
o

ss
 (

%
)

0

50

100

150

200

250

300

350

400

450

500

B
an

d
w

id
th

(K
b

/s
)

to level four between t=200s and t=220s with some disturbances around t=240s and down again to level one just after
t=250s. The losses went down and the system could even go higher in QoS if the scale allowed it. After t=350s the
algorithm started to decrease the QoS as the bandwidth started not to be available.

 Figure 7. Results of the third experiment.

5. RELATED WORK

This section compares some works to our own. The works more similar to ours are 2,3 and 14.

Busse et al.2 presents a dynamic QoS control mechanism for continuous media based on RTP that is similar to ours.
Some differences exist though. It just considers the congestion in the network but we also deal with the loads in the
machines involved. It decides about the network conditions based only in the losses reported by RTCP received reports; we
added two fields to these packets in order to understand not only the machines statuses but also to have a better perception
of the network state (we get also information about losses due to excessive delay). A last difference is that 2 considers the
algorithm as part of the application and we consider it as part of a software layer that handles the complexity of QoS control
for the application, although very integrated with the application.

Another work very similar to ours is 10. It has the same similarities and differences in relation to our work referred
above about 2. It considers also scalability issues related to the use of multicast.

Campbell3 also presents a work similar to ours. They also consider a layer, the "multimedia enhanced transport
layer", that handles the control of the QoS for the application. The API is described with detail. RTP is not used; monitoring
information is passed using a specific mechanism. The transport system proposed is part of the "Quality of Service
Architecture" (QOS-A) proposed in4.

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400

Time (s)

L
o

ss
 (

%
)

0

50

100

150

200

250

300

350

400

450

500

B
an

d
w

id
th

(K
b

/s
)

A framework for QoS management (or control) in a multimedia distributed system is given in8. It defines concepts
and proposes a set of mechanisms that can be used to perform that management. Our work can be considered as an
implementation of that general framework, although we do not use the same terminology.

A problem related but not treated by our paper is receiver-dependent QoS when using multicast. The problem is how
to deliver different levels of QoS to different receivers in multicast conditions. This problem is focused in7. Filters are used
to adjust the QoS of a stream to the specific receiver needs.

6. CONCLUSIONS

The QoS control for distributed multimedia applications has to take into consideration several aspects and only an
integrated approach that includes the sender and the receiver machines can handle it entirely. This paper presented a closed
loop control mechanism to manage QoS in such an integrated way.

Moreover, the applications can express their requirements using a framework that is more suitable to concepts that
they are sensitive and not in terms of low-level QoS parameters. The application defines the "legal" QoS values in a scale
composed of levels defined in terms of a set of QoS parameters. Coarse grain adjustments can be made if the extreme levels
are reached.

Experiments have shown that the mapping between these concepts and the low-level ones can be achieved
successfully and the subjective evaluation shown that users notice jumps on the quality of the session but it is not a major
distracting factor.

A topic for further work is the use of this kind of algorithms in multicast configurations with special focus on
scalability issues.

REFERENCES

1. N. Antunes, R. Rocha and P. Pinto, „Analysis and Simulation of a Traffic Management Control Scheme for ATM
Switches with Loose Commitments” , Inter. Conf. On Networks and Distributed Systems Modeling and Simulation,
Phoenix, 1997

2. I. Busse, B. Deffner and H. Schulzrinne, „Dynamic QoS Control of Multimedia Applications based on RTP” ,
Computer Communications,. 19, Number 1, Jan. 96

3. A. Campbell and G. Coulson, „A QoS Adaptative Transport System: Design, Implementation and Experience” , ACM
Multimedia´96, Boston, pp. 117-127, 1996

4. A. Campbell, G. Coulson and D. Hutchison, „A Quality of Service Architecture” , ACM SIGCOMM 94, Computer
Communication Review, 24, pp. 6-27, April 1994

5. D. Clark and D. Tennenhouse, „Architectural Considerations for a New Generation of Protocols” , ACM SIGCOMM
90, Philadelphia, pp. 200-208, 1990

6. M. Correia and P. Pinto, „Low-Level Multimedia Synchronization Algorithms on Broadband Networks” , ACM
Multimedia´95, San Francisco, 423-434, 1995

7. F. Garcia, D. Hutchison, A. Mauthe and N. Yeadon, „QoS Support for Distributed Multimedia Applications” , Proc. of
the Inter. Conf. in Distributed Processing (ICDP´96), Dresden, 1996

8. ISO/IEC JTC1/SC21, „ Information Technology – Quality of Service Framework – Final CD” , July 1995
9. H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson, „RTP: A Transport Protocol for Real-Time Application” ,

RFC 1889, January 1996
10. D. Sisalem, „End-To-End Quality of Service Control Using Adaptive Applications", IFIP 5th Inter. Workshop on QoS,

New York, May 1997

