
 

 

 

 

Tele-DEE-UNL                TR-2003-01 

 

 

February 2003 

 

 
 
 

Secção Telecomunicações 
Departamento de Engenharia Electrotécnica 

Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa 
Quinta da Torre, 2829-516 Caparica 

Portugal 
 

 

 
 
 
 
 
 
 

Technical reports are available at http://tele1.dee.fct.unl.pt/tech-reports. 
The fies are stored in PDF, with the report number as filename. Alternatively, reports 

are available by post from the above address. 

Scalability of applications on active overlay 
networks with dynamic server deployment 

Luis Bernardo 
Paulo Pinto 



 

 
 



 

 1

Abstract— This paper presents a performance study about an algorithm to control the dynamic 

deployment of application servers on an active network as a mechanism to make a scalable system. 

Application servers measure their load and create replicas when they become overloaded. Clients 

can give up after a certain waiting time and return to the system for better service. This study is 

general enough to be applied to most of the existing systems and not only our own. The algorithm is 

first analyzed from an analytical point of view. This analysis highlights the importance of the various 

parameters and provides an indication of their values in order to configure a real system. We prove 

that in dynamic systems the redistribution of clients is more effective in improving performance than 

the extensive use of load balancing. The algorithm is finally tested on a simulator. Two experiments 

are presented which study the algorithm scalability and assert the analytical model. 

 

Index Terms—algorithms and applications; performance evaluation, dynamic replication, grid 

computing 

I. INTRODUCTION 

Overload situations in the Internet are already rather common and the reality will tend to get worse as the 

number of active users increases. Nowadays, the very small percentage of the potential users can create 

already annoying bottlenecks. Certain types of transactions and functionalities can use novel approaches in 

order to solve most of the problems. Popular web sites are generally crowded (and even more on some 

notorious events) and server technology [Bes97][Col98][Sch00] cannot prevent bandwidth bottlenecks on 

the access network. Sites that were unknown minutes before become so popular that no telecommunication 

infrastructure can be installed on the fly. A useful technology to tackle the problem can be the definition of 

active overlay networks and dynamic server deployment. The main idea is to sense the "system" and act 

accordingly with tools that have more or less the same time reaction as the load. 

In general terms, agent technology [Mil99] can address the problem, but can these systems cope with the 



 

 2

huge number of users themselves? I.e. are they scalable? If the wanted objects, or the transaction 

processing, are heavy weight, mirror servers can be established in advance and some work has been done 

on managing systems for these scenarios [Ste99][COR02]. What about if we are dealing with minor entities 

that can suddenly become very popular? For instance a voting system attached to a TV program; the lotto 

betting just before the draw; availability of a parking place on the downtown parking lot; etc. Placing 

servers in the way traditional middleware systems do [COR02] can be very heavy and useless most of the 

time. If we assume that servers are very lightweight, dynamically deploying them can make sense. The 

system will be so mobile that an active overlay network is essential. Is such system scalable? Can it adapt 

to peaks of user load, both expected and unexpected? Can a system manager initially configure something 

to make the system more adaptable, based on the knowledge of the phenomena? What are the important 

characteristics of a system that enable such an approach? 

This paper derives a performance analysis for such a system in order to understand the relevance of the 

various system parameters for the answers to these questions. It starts by presenting the scenario and a 

small overview of the system, both in terms of the server algorithms and adaptation model. A more 

extensive description can be found in [Ber98]. Simulations were performed that both validate the analytical 

model and showed the suitability of such a system to the presented problem. Some results are presented in 

the paper. 

II. SYSTEM OVERVIEW 

A. Context 

We assume a network composed of computers and communication links between them. Each computer is 

a peer node where system and application objects may run. Middleware services connect the computers, 

and manage the network and computation resources, creating an active overlay network. A user or an 

active object may start one or more application servers on any region of the network, in order to deploy a 

new application. Thereafter, application servers will autonomously handle the deployment of new 



 

 3

application servers, in order to satisfy the service response time requirements. 

Users access the application services using an application unique identifier (AUI), invoking a server 

replica. The AUI is resolved by the location service [Ste98][Cza01][Ber99], which returns a reference to 

the interface of one (or more) replica. 

When an application becomes popular, the load is felt by both the location service and the application 

service. They both react by creating new replicas of the servers. Additionally, the location service can 

perform some load balancing when assigning server replicas. We assume no inter-synchronization between 

application servers. So, the performance of an application on an active overlay network depends not only 

on the number of application servers present on the network, but also on their locations, and on the design 

choices of the location service. The adaptation algorithm must respond promptly to load peaks, in order to 

reduce the interval when the client load exceeds the total (or local) server capacity. Additionally, the 

algorithm must create a number of replicas capable of handling the total load. 

The location service can distribute the clients by the replicas just to minimize the usage of network 

resources, can perform some load balancing, or simply, distribute them uniformly on a random manner. On 

a very large network, with millions of users, the first option must always hold – the system must select one 

of the nearest replicas and avoid the use of network core bandwidth. The load balancing approach tries to 

keep the load uniform amongst all the replicas. However, load balancing theory results prove that for very 

long transmission delays the performance of a random distribution system resembles the performance of a 

system with periodic load update [Bil97]. Therefore, in order to produce a scalable system on a very large 

network, we must restrict the dissemination of load information to small regions.  

B. Algorithm 

In order to adapt the number and location of the application server replicas, each server monitors its local 

load, and possibly, the neighbor's load, to decide when to create a new replica, to migrate, or to self-

destroy. There are, again, similarities with the load-balancing problem: the server decides to distribute a set 



 

 4

of client requests indirectly by creating a remote server replica. Of course, the problem is more complex, 

because the number of processors varies with time. Experiences with load balancing algorithms 

[Kun91][Col98] showed that load metrics based on averages of values produced slower adaptation to load, 

which resulted on lower performances. Load may change rapidly, and an average metrics continues to 

account for old values during some time. The number of needed servers can be calculated from: (a) the 

increase rate of the number of requests on the server queue and (b) the average request processing time 

(1/µ). However, derivative systems can easily be very unstable. So, to avoid instability, an average of the 

variation rate of the number of clients on the queue during an interval with duration equal to the average 

clone creation time ( clonet~ ), is used instead. 

Several threshold values on the queue length mark the reaction moments of the servers. Reactions other 

than the first must take into consideration that the system is not empty. The general expression is (1), and 

clonet~µβ  provides the offset, where β is a real number (usually below one).  

( ) clonetiMaxCliQiThreshold ~1)( µβ−+=  (1) 

Equation (1) with β equal to one creates approximately the minimum number of server replicas adapted 

to the rate of new clients during an interval of duration clonet~ . When β is bellow one, more servers are 

created. We will see that with such a mechanism the system will adapt to load peaks within an interval of 

about clonet~2  time units. 

The new replicas will be created on a region of the network where clients are located. Servers keep a 

statistical record of the client's regions. Obviously, each time a replica is created in a certain region these 

records must be updated by clonet~µ  (the number of requests processed during the interval of creation of the 

new replica). The algorithm proposed for the location service [Ber99] resolves an AUI following a path of 

location servers. The clients can have one of the two behaviors: (a) use remote procedure call (RPC) or an 

asynchronous version of RPC (e.g. CORBA messaging [COR02] and Web services [Cur02]) and invoke 

the local location server. They can get an indication of another location server and repeat the process. 



 

 5

When they finally invoke the service they provide the path they followed; (b) launch a mobile agent or use 

remote evaluation [Ghe97] and migrate to the places where the location servers are invoked. When they 

finally invoke the service they provide the migration path. 

In possession of the path the application servers have topological information. For other location 

services, which resolve the AUI without any transient information to the client (e.g. [Cza01] [Ste98]), 

servers wishing to use this feature might have to get the information elsewhere. For instance, use client IP 

addresses and BGP routing tables’ information [Kri00] [Guy95], to associate clients with an autonomous 

system. Note, however, that this topological information is a lateral issue in relation to the main focus of 

the paper. If it exists it can lead to a better placement of a server replica with regard to the usage of the core 

network. 

If the replica creation time ( clonet~ ) is high compared to the average request processing time (1/µ), the 

number of requests accumulated in the queue can become too high, originating a slow overall adaptation to 

a peak of load – queued clients just have to wait. To reduce the adaptation time, it would be nice to 

redistribute the clients accumulated on servers’ queues amongst all the available servers, including the new 

ones. This is simple to implement: clients only wait a certain time for responses (discarding late responses) 

(T); servers discard requests waiting in the queue for more than a certain time (Timeout). The values need 

not be the same, but we used the same value in the analytical model. Each time a client gives up it returns 

to the location service, and tries to locate a less loaded application server. 

Notice that the behavior of the Timeout redistribution depends on the client implementation strategy and 

actual load conditions on the network. If remote invocation is used, returning clients start at the local 

location server again and can get a fresh application server placed there. If migration is used, returning 

clients forget the path and are contributing locally to the load, putting pressure for a fresh clone to be 

placed near the old one. 

Redistribution, as it is, puts the system in the direction of stability but if the peak load is too severe there 

is only a slow decay on the application server’s queue length – most of the client requests coming from 



 

 6

other regions of the network will be handled there. The process could be accelerated if the servers had 

knowledge of their load situation. Therefore, a new indicator is defined based on the average load (2). The 

variable Loadi is the processor occupation within a reading interval. α weights history in comparison to the 

last value1. If the server is very loaded a local new replica is created. 

( )

( ) kn

n

k

kn

nnn

MLoad

MLoadLoad

−

−

=

−

∑×−+×=

×−+×=
1

0
0

1

1

1

ααα

αα
 (2) 

The replica creation decision could also take into account the load on the neighbor application servers. 

Some authors [She98] have proposed cooperation algorithms for controlling replication, where servers 

periodically send information about their local load. If any of the neighbors is not loaded, the replication 

decision is delayed. Application servers must then redirect client requests to these servers, in order to 

preserve their local load within bounds. Unfortunately, this strategy can lead to delayed replica creation in 

result of obsolete load information [Bil97] and needs some overhead bandwidth to exchange information.  

The destruction of application servers must be coordinated, to maintain a minimum number of servers 

running on the network. Surviving servers have to take into account raises of the load due to scarcer server 

offer. A cooperation algorithm was proposed in [Ber99], based on the average load metric (2). 

III. ANALYTICAL MODEL 

A. Simplified System Model 

The purpose of the model is to study the system performance. It is related to the time it takes a client to 

run an application. A certain service, and ours particularly, is effective if the system performance is 

acceptable during the dynamic deployment of new application servers, in response to a load peak. To study 

the transitory period of adaptation we need to model the behavior of the entire system, composed by: a 

varying set of application servers, a continuous flow of clients, and the location service. Notice that 

traditional classical statistical models do not apply because they assume an equilibrium state, which is 

 
1 A similar result could have been achieved by sensing the length and behavior of the queue. 



 

 7

stationary and ergodic [Pap84]. 

The location service plays an essential role on the behavior of the system, since it distributes the clients 

amongst the servers, and thus, defines the servers' instant load. It is a known fact that the best possible 

performance is achieved using a single queue for all the servers, and a ubiquitous knowledge of the servers 

load. For an exponential inter-arrival client request distribution and an exponential distribution for the 

processing time on the servers, the system can be modeled by M/M/1 [Tah82]. Unfortunately, this scenario 

cannot be implemented on a very large network, due to the communication delay and the communication 

overhead. Instead, the proposed location service distributes evenly the load amongst the application servers 

at equal distances, or privileges the servers at shorter distances, independently of their local load. For 

restricted regions, some load information could be introduced. However, for simplicity, on the analytical 

model we will assume that application servers and clients are evenly distributed on the network and that 

client requests are uniformly distributed amongst the servers. Assuming the above distributions, the system 

could then be modeled by an M/M/c queue model. The instantaneous load of an application server (λs(t)) 

can be estimated using (3), for a total load of λ client requests per time unit, distributed by c applications 

servers. The equation also assumes that the location service processing time is small, compared to the 

application service processing time. 

( ) ( )
( )tc

tts
λλ ≈  (3) 

The study analyzes the evolution of the number of clients on the application server queues. If the average 

number of new clients entering the system is much larger than one, the discrete time system can be 

approximated by a continuous model. The client flow rate is defined by the average frequency of arrival of 

new client requests (λN(t)) and the processing capacity of the application servers (µ) can be modeled by the 

inverse of the average client request processing time on the application servers. It is assumed, by 

hypothesis, that the variance of both values is low compared to their average values. 

Figure 1 presents the client’s flows on the system. The total flow of clients entering the location service 



 

 8

(λ(t)) are: the new ones (λN(t)); and the ones which were not processed on the application servers and 

returned to the location service (λT(t)), after the time limit defined above (T). 

Under the above conditions, it is possible to deduct the number of clients on a server queue (4). It is also 

possible to deduct the total number of clients present in the system, waiting to be processed (5). 

( ) ( )( )∫ −= dtttm ss µλ  (4) 

( ) ∑=
s

s tmtm )(  (5) 

...
λN

λc

λ1
T

1

c

λT

 

Figure 1: Client flow  

This analytical model analyzes the response of a resting system, with c0 initial application servers, which 

receives a peak of λ client requests after instant zero (with λ/µ greater than c0). It analyses the influence of 

the application server's creation algorithm, and of the location service behavior.  

B. Analysis of the application server deployment algorithm 

Application servers create replicas based on the queue length and on the average load. However, during a 

load peak, most of the replicas will be created in result of the queue growth. The average load reacts slowly 

(it depends on the measurement period), detecting saturated application servers for which the queue is 

reducing too slowly. 

Application server replicas are created whenever the number of client requests on the server's queue 



 

 9

( )
iDs Tm  reaches a threshold value given by (1). In order to simplify the model the threshold parameters are 

assumed constants (in practical terms it speeds up replica creation a little bit). We define TDi as the instant 

when an application server decides to create replica i. Replica i will start running tclone time units 

afterwards, at TSi (6). 

cloneDS tTT
ii
+=  (6) 

The total number of replicas created on a system depends on all the server deployment algorithm 

parameters, and on parameter T, which influences the number of clients that return to the location service. 

The initial set of application servers is responsible for creating most of the replicas. The creation of new 

replicas will only end when the server’s instant load (the total load evenly divided by all the replicas) is 

equal or below the server's processing capacity. We define Kmax as the number of replicas created for each 

initial application server (either directly or created by the ones it created). Due to the symmetry of the 

model, each initial server creates exactly the same number of replicas at the same instants. Figure 2 shows 

an example of the evolution of the number of servers in response to a load peak. It is possible to have 

creation decisions before or after the first group of servers has started (at instant TS1). If no clients return to 

the location service (T = ∞), the number of requests on the queues of the c0 initial servers can be calculated 

using (7). The evolution of the number of requests on the queue of the servers that start at instant TSn can be 

calculated in function of queue of the initial servers using (8). Otherwise  (T ≠ ∞), it may be necessary to 

add the λT(t) component. 

( )
( )

( ) ( )

















>−







−

+
+−








−++








−

≤<−







−+








−

≤







−

=

− maxmax1maxmax1

2111

1

0

0max0max0

00

0

)1(
...

...
2

KKKK SSSSS

SSSS

S

s

TtifTt
cK

TT
cK

T
c

TtTifTt
c

T
c

Ttift
c

tm

µλµλµλ

µλµλ

µλ

 (7) 

( ) ( ) ( )
nnn SSsss TtifTmtmtm ≥−=

00
 (8) 

From time zero until TS1 (startup of the first group of replicas) every replica creation decision will be 



 

 10

taken by the initial set of servers. During this period, the server queue will increase at a constant rate (λ/c0-

µ), independently of λT(t). If a server discards λT(t)/c0 clients per time unit due to overtime, they will be 

redistributed through the same set of servers, originating an equal flow of requests. The queue only grows 

due to the new requests, originating the creation of new replicas when its length crosses a threshold value 

(1). In this period, from zero to TS1, the time between decisions is fixed, originating a linear relation 

between TDn and the number of replicas n (9). The total number of decisions to create server replicas (KA1) 

(for each initial server) until TS1 can be calculated using (10), where floor represents the minimum integer 

above or equal to a number. Notice that if β is equal to or below one, the total number of servers created are 

capable of handling all the new requests. In figure 2, KA1 is equal to 3. 

( )
µλ

µβ
−

−+
=

0

~1

c

tnMaxCliQ
T clone

Dn
      if n ≤ KA1 (9) 



















−+= 111

0
1 µ

λ
β c

floorK A  (10) 

After TS1, the client requests will be distributed by a larger number of servers (some less loaded). If 

clients are not redistributed, then the queue reaches its maximum value when the processing power of 

servers is equal to or above the client load. Otherwise, the client redistribution will contribute to the 

creation of extra servers and to reduce the adaptation time. During an interval with duration T, each server 

of the initial group of servers will continue to send λs(t-T)-µ = λT(t)/c0 clients per time unit to the location 

service but will receive just λT(t)/ct requests (ct represents the number of servers at instant t), reducing the 

number of clients in the queue. The new servers receive a total input rate with contributions from both λ 

(the new requests) and λT(t) (the clients which returned to the location service). Therefore, during this 

interval, the new servers will create more replicas than the initial servers since they receive a higher request 

rate, influenced by λT(t). After TS1+T the load of the initial servers is balanced with the load on the servers 

which started on TS1. When a new set of servers start at TSp the client redistribution mechanism origins also 



 

 11

a gradual transfer of load from the existing servers to the newly created servers during an interval of 

duration T. The relative strength of these peaks is lower for higher values of p, because of a lower 

percentage variation on the processing power on the network (from pµc0 to (p+1)µc0). Figure 2 illustrates a 

typical situation when λT(t) is above zero, where most of the creation decisions after TS1 came from the new 

servers. 

 

Figure 2: Server replica creation for β ≤ 1 

The total number of replicas created by the servers that started on TSp depends on the maximum number 

of clients on the servers' queues, which can be calculated using (11). The algorithm will stop deciding to 

create replicas when the server queues stop growing (there is already enough processing power). This 

happens when the total number of replicas (originated from the original servers and from their descendents) 

reaches Ksetup(λT) (12). For the example of figure 2, Ksetup(λT)=3 (after that there are no more decisions to 

create replicas). KA1 is the initial and practical reaction of the system (not taking into account 

redistribution). Ksetup is the theoretical number of servers needed to respond to the load (including the 

redistribution load). It can be shown that the maximum values for the queue length on the initial servers 

happens just before clients start going back to the location service, which depends on the value of T. 

[ ] ( ) [ ]
( ) ( )∑

−

=

−







−

+
+

=
+

1

0
max 11

~setup

nn

K

pn
SS

T
T TT

cn
n

pm µ
λλ

λ  (11) 

Time 

TD1 

TD2 

TS1 
TD3 

TS2 

TS3 

TD4 

TD5 

TS4 

TS5 

G 



 

 12

( ) 1
0

−






 +
=

µ
λλ

λ
c

ceilK T
Tsetup  (12) 

Equation (11) is impossible to calculate due to the behavior of [ ]nTλ
~

. It can, however be approximated in 

function of T. It can be simplified to (13) considering only the replicas creation decisions taken until 
1ST  and 

for values of T that make λT(t) constant during interval between TS1 and TSKA1. Those values are T≈ TS1 and 

T > TSKA1.  

[ ] ( ) ( )








−−








+

+

−
≥ ∑

−

=

pK
nc

c

t
pm A

K

pn

Tclone
T

A

1

1

0
0

max

1

1
1~

µ
λλ

µλ
µβ

λ  (13) 

For values of T such that TS1 < T < TSKA1, λT(t) will be zero until T. The last server created until T is n(T) 

(14). The total number of clients accumulated until T is (15). From T until TSKA1 further clients join the 

queue (16). The total number of accumulated clients is the sum of (15) plus (16), except for the initial set of 

servers, where the maximum length happens (17) exactly when clients start going back to the location 

service.  

( ) ( )( )







 ×−−−
+=

clone

clone

tc
MaxCliQctTc

floorTn
0

001
βµ

µλ
 (14) 

{ }[ ] ( )
( )

( )( ) ( )( ) ( )
( ) ( )

( )








>

≤−







−

+
+−




















−








+−=− ∑

−

=

Tnpif

TnpifTT
cTn

pTnu
nc

c

t
pbeforehighTm TnS

Tn

pn

clone

0

11

~

0

1

0
0

max

µ
λ

µλ
µλ

µβ
 (15) 

{ }[ ]
( )( ) ( )( ) ( )

( ) ( )

( ) ( )













>

















−

+
+

−

≤−







−

+
+

+

















−

+
+

−
=−

∑

∑
−

=

−

+=
+

Tnpif
nc

c

t

TnpifTT
cTnnc

c

t

pafterhighTm
A

Tn

A

K

pn

Tclone

S
T

K

Tnn

Tclone

1

0
0

0

1

1 0
0

max
1

1

1

1

~
11

~

µ
λλ

µλ
µβ

µ
λλ

µ
λλ

µλ
µβ

 (16) 

{ }[ ] { }[ ]10 max
0

max beforehighTmtchigtTm clone −+




 −= µλ  (17) 

When T ≤ TSI-TSI-1, all clients are redistributed amongst the available servers after T time units, and all 

servers on the system have the same queue length before a new set of servers start. Therefore, the 



 

 13

maximum queue length is achieved exactly at the end of the interval just before a new set of server starts 

(18). u[n] returns one for n higher or equal to zero, and zero otherwise. 

[ ] ( ) ( ) ( )( ) [ ]















−








+−

−
+−

+
=















−
≤ ∑

=

11
~

1
1~

1
0

0

0
0

0

max 1
pucn

c

t
Tc

cp
p

c

t
Tm

p

n

clone
S

clone µλ
µλ

µβ
µλ

µλ
µβ

 (18) 

Finally, when T > TSI-TSI-1 but T < TS1, the system behavior involves multiple client redistribution 

occurring in parallel, which could be modeled by a complex model (more complex than the system 

analyzed in annex, for a single creation of servers). A linear approximation (19) is used instead, to calculate 

an approximate value for the maximum queue length.  

[ ]
{ }[ ] { }[ ]

( ) { }[ ]pTTmTT
T

pTTmpTm
pTT

c

t
m SS

S
t

S
t

S
clone

c

clone

c

clone

11

10

10

1 max~
max

~

max

0

max

~
=+−

−

=−≤
=














<<

− −

−

µ
βµ

µ
βµ

λ

λ

µλ
µβ

 (19) 

The total number of replicas created by each element of a pth server group (N[p]) can be calculated 

resolving (20), leading to (21).  

[ ]( ) [ ]( ) cloneT tpNMaxCliQpm ~1max µβλ −+=  (20) 

[ ] [ ]
101~

max −<≤+






 −
= setup

clone

Kpfor
t
MaxCliQpm

floorpN
µβ

 (21) 

The total number of servers (c1) created after a load peak results from the addition of all the replicas 

created during the adaptation, multiplied by the initial number of servers (22). 

[ ]







+≥ ∑

−

=

1

0
01

1

1
AK

p

pNcc  (22) 

The proposed algorithm is flexible, allowing an extended set of configurations. Figure 3 presents the 

evolution of c1 in function of MaxCliQ, for tclone =1 tic (time units), c0 = 1 server, λ = 625 clients/tic, µ=100 

clients/tic, and for three values of T (∞, TS1 and 0.12) and two values of β (1 and 0.8). The total number of 

servers is influenced by MaxCliQ and β, but the most important parameter is T. Using the model, it is 

 
2 0.1 was chosen to make T< TSI-TSI-1 



 

 14

possible to configure these three parameters in a real system to make it behave as we desire (assuming λ, 

tclone, and µ are known). The total server deployment time is independent of the configuration – i.e., all c1 

servers will be running at instant TSKA1+tclone. However, the time clients wait before being processed on a 

server depends on c1. As is demonstrated in the next section, c1 must be large enough to handle the new 

clients and also the clients accumulated during the deployment of the servers, in order to have low system 

stabilization times.  

 

Figure 3 : Total number of servers created in response to a load peak 

IV. ANALYSIS OF THE SYSTEM BEHAVIOR 

A. Simplified model 

The application server deployment algorithm originates a gradual creation of server replicas during an 

adaptation to a load peak. We intend to prove the stability and convergence of the resulting system, by 

analyzing the worst service times measured by the application clients. In order to simplify the analytical 

model, in this section we assume that all c1-c0 servers are created at trun = TSKA1+ tclone. This value constitutes 

an upper bound for the creation time of the last of the servers considered in (19). Figure 4 illustrates the 

approximation.  

On the following sections, we will analyze the influence of the location service and parameter T on the 

50 100 150 200
7
8
9

10
11
12
13
14
15
16
17
18
19

β= 1     T= 0.1 
β= 0.8  T= TS1 
β= 1     T= TS1 
β= 0.8  T= ∞ 

Number of servers

MaxCliQ

c 1
 



 

 15

application performance. 

 

Figure 4: Approximation for the evolution on the number of servers for MaxCliQ = 10 clients, 
tclone= 1 tic, c0= 1 server, λ= 625 clients/tic, µ= 10 clients/tic, β= 1 and T= ∞ tics 

B. Perfect load balancing 

The theoretical best performance is achieved when a single queue is used for all the servers. This system 

is equivalent to an M/M/c queue system, which distributes the client requests to the servers whenever they 

become idle. The global queue evolution can be modeled by (23), where c(t) models the number of servers 

available. Clients accumulate on the queue until trun, when c1-c0 new servers start running. Afterwards, the 

number of clients decays until it reaches zero, and all accumulated clients are processed. The stabilization 

time (tstab) can be calculated using (24).  

( ) ( ) ( )( )

( ) ( )

( ) ( ) ( ) ( )( )














>

≤<−−+−=−+−

≤−=−

=−= ∫∫
∫

∫

stab

t

t stabrunrunrun

t

t

run

tt

tttttctcdtcdtc

tttcdtc

dttcttm
run

rune

0

1010 0

0 00

µλµλµλµλ

µλµλ

µλ
 (23) 

runoptimstab t
c

c
t 








−

−
+=− λµ

µλ

1

01  (24) 

However, it is not possible to implement a single queue for a large network with complete knowledge of 

the server loads. Therefore, tstab-optim will be used for comparing the performance of other implementations. 

Notice that trun bounds the minimum achievable value, when c1 grows infinitely (when a server is available 

0 
10 
20 
30 
40 
50 
60 
70 
80 

0 1 2 3 4

t [tic]

N
. s

er
ve

rs
 

Theo
Aprox

trun= TSKA1 + tclone



 

 16

for each client request). 

C. Uniform Client Distribution During Initial Name Resolution 

On a large-scale system the location service will have no information about the servers load. In this 

section we will assume that client requests are distributed evenly by all the active servers, and that clients 

never return to the location service after binding to an application server (λT(t) is zero).  

The performance bottleneck will be on the initial set of c0 application servers. From instant zero to 

instant trun they will receive a continuous flow of λ clients per tic, which will stay in their queues. The 

system only reaches equilibrium when the c0 servers process all these requests plus the extra requests 

accumulated after trun. Equation (25) models the evolution of their queue lengths. 

( )
( ) run

run

runrun

s ttif
ttif

ttt
c

t
c

tt
ctm

i >
≤










−−+

−
=

µλλ

µλ

10

0  (25) 

The stabilization time is calculated from the equation above, resolving ms1
(t)= 0: 

runstab t
c

c
c

t
λµ

λ

−






 −

=−
1

0

1

1

1
 (26) 

You may notice that tstab-1 has a lower possible bound of λtrun/µc0, when c1 grows infinitely.  

It is possible to calculate the total delay for each client that enters the application server queue on one of 

the initial servers at ti, starts being processed at instant to, and ends running the application at instant to+1/µ. 

With expression (27) we can calculate to from the entering order in the queue (m). With expression (28) we 

can calculate ti for the mth client. 

µ
mmto =)(  (27) 



 

 17

( )

0

0

0

11

0

1
c
t

mif

c
t

mif

t
c
c

m
c

m
c

mt
run

run

run

i λ

λ

λ

λ

>

≤


















−+

=  (28) 

The client delay (29) is calculated from the two expressions above, referencing both variables to the 

output time. Notice that (29) is only valid as long as there are clients accumulated in the queue. After tstab-1 

the average output rate of an application server is equal to the input rate, and the client delay becomes 

equal to the processing delay plus a possible queuing delay (it depends on the client inter-arrival statistical 

distribution). However, the flow model does not allow us to calculate this queuing delay. 

( )

µ
λ

µ
λ

λ
µ

µ

λ
µ

µ
µµµ

0
1

0

0

11

0

1

111

11

1)()(

c
t

ttif

c
t

tif

t
c
c

t
c

t
c

tttttdelay
tun

stab

run

run

io

>>

≤


















−+






 −+







 −+

=+−=
−

 (29) 

The maximum delay (30) occurs for the clients that entered in the queue just before trun, and that exited 

on instant µ
λ

0c
trun . 

{ } runt
c

delay 







−+= 11max

0
1 µ

λ
µ

 (30) 

D. Balancing Clients During Initial Name Resolution 

To assert the relative importance of load balancing and client redistribution amongst the new application 

servers, we studied a second scenario. Clients are assigned to the least loaded server but once in the queue, 

they do not go back to the location service. The big change compared to the previous scenario is only after 

trun. All new client requests will go to the new set of c1-c0 servers, until load is balanced on both sets of 

servers (at instant teq). From then on, load is equally distributed amongst all servers. 

If the c1-c0 new servers are not enough to handle λ client requests per tic, then the queue length on the 

new servers will grow from trun until ( ) ( )eqiniteqnew tmtm =  (31). The evolution of the queue on the initial set 

of applications servers (32) will then have three sections. If they are enough, it will have only the first two 



 

 18

sections. Unfortunately, until trun the evolution of the number of client requests on the initial servers' queue 

(32) is not modified. I.e. there is no redistribution and it will have impact on the delay. 

( )
runeq t

cc
c
c

t 






 −
−=

λ
µ01

0

1  (31) 

( )

( )













>−−+

≤<−

≤







−

=

eqeqrun

eqrunrun

run

s

ttifttt
c

t
c

tttiftt
c

ttift
c

tm
i

µλλ

µλ

µλ

10

0

0

 (32) 

The stabilization time (33) is slightly reduced compared to (26). But its minimum value (for large values 

of c1) has not changed. 

( )









<−
−

−

≥−
=−

µ
λ

λµ
µ

µ
λ

µ
λ

01
1

01

01
0

2

ccift
c

cc

ccift
ct

run

run

stab  (33) 

The same conclusions apply to the client requests delay (34). Comparing it to the delay without using 

load balancing (29), we notice a faster decay on the delay after the maximum value. Unfortunately, the 

maximum value is yet the same (30), and is related to the last client request, which entered on the queue 

slightly before trun. If clients are not redistributed amongst all the new servers, it is not possible to improve 

the application performance. 

( )

µ
λ

µ
λ

µ
λλ

µ
µ

λ
µ

µµµµ

0
2

0

011

0

2

11

1 1

1)()(

c
t

ttif

c
t

tif

t
cc

t
c

t
c

tttttdelay
run

stab

run

run

io

>>

≤










−
+






 −+







 −+

=+−=
−

 (34) 

E. Redistribution of Clients 

Clients should then go back to the location service. However, they should go back gradually, in order to 

avoid crowding the location servers with a peak of requests. The method proposed on this paper, of 



 

 19

defining the time limit T has this effect: clients return to the location service at the same rate as they 

originally arrived at the server. It is also easy to implement. 

The location service receives client requests returning from the servers at a rate (35), which is a function 

of the server load T time units ago on each of the overloaded servers (u(t) is the Heaviside function: zero 

for t negative and one for t positive). 

( ) ( )∑ −−−−=
s

ssT TtuTtt µλµλλ )()()(  (35) 

The system behavior depends strongly on the value of T. Let κ(T) be the entering time of the first client 

that can be returned after T. From instant zero until instant κ(T) (36) the client delay in the server queue is 

below T. Afterwards, some clients will go back to the location service, with probability (1-c0µ/λ), T time 

units after entering in the queue. When T is low compared to trun, clients start going back to the location 

service when the new servers are not running yet. In result, they will bind to the same application server, 

creating a continuous flow of clients that circulate through the location service at a rate λT(t). So, the queue 

length continues to grow at the same rate (λ/c0-µ) (new clients). The rate of circulating clients λT, is 

constant for each of the successive periods of T (37), but raises in each period: during the interval κ+T to 

κ+2T, a certain number of clients go back to the location service; in the following interval (κ+2T to κ+3T) 

a similar number returns once and some of the old that return twice. Equation (37) is valid of t< trun.  

( ) ( )µλ
µκ

0

0
c

TcT −=  (36) 

( )( ) ( ) ( )( )TtucT
TTtfloortT κµλκλ −−





 −−= 0)(  (37) 

Notice that the extreme values of T allow us to change the behavior of the system, from a single queue 

system (for T = 0) to a system where clients are not redistributed (for T above the stabilization time). The 

best tradeoff is achieved when clients start going back to the location service as soon as the new replicas 

are created. The corresponding value of T is Toptimal (38). For large load peaks, Toptimal is approximately 

equal to trun.  



 

 20

runoptimal tcT 




 −= λ

µ01  (38) 

The system behavior considering T = Toptimal can be described by a sequence of intervals of duration T 

starting after trun, where λT(t) is constant in each interval. This system may be modeled by a discrete system 

apart from the first interval of duration trun. Therefore, in order to obtain a linear discrete model, the system 

can be simplified to an equivalent one with an initial interval of duration T. Parameter λTs[1] is defined as 

the average rate of returning clients (normalized for an equivalent interval of duration T) from each server 

during the second interval, and is calculated using (39). The evolution of the queue length on the initial 

servers can be calculated using (40). The deduction of (40) is presented in the appendix.  

[ ]
00

1
cT

t
c

run
Ts

λµλλ =







−=  (39) 

( )

[ ]

[ ] [ ] ( )

[ ] ( ) [ ]















+
<+≥−−








−+








+−

+≤<−















−+−+

≤

=

µ
λλ

µλλµλ

λµλλ

λ

1
1

111

1

0
1

11

0

1

1

0

1

Ts
runrunTs

runrunrunTsTs

run
run

Ts

s

c
candTttifTtt

c
T

c
c

c

Ttttiftt
c
c

c
T

ttift
t
T

tm
i

 (40) 

The system behavior depends on the total number of servers available, c1, after trun. If c1 is high enough 

to ensure that the client request rate is below the processing capacity (µ) (41), then a maximum bound time 

for processing all client requests is trun+T tics. If condition (41) is not valid, then the clients can possibly 

return several times to the location service.  

[ ] [ ]
µ
λλ

µ
λλλλ

λ
11)()(

)( 0
1

1

0

1

TsTsTN
s

c
c

c
c

c
tt

t
+

≥⇒≤
+

=
+

=  (41) 

For c1 values above the threshold (41) (high enough capacity), the stabilization time depends on the 

evolution of the queue length on the initial servers. Otherwise, all the queue lengths become equal after the 

second interval. From (40) we can easily calculate the stabilization time for T = Toptimal (42).  



 

 21

( )
{ }

[ ]
( ) [ ]

[ ]

[ ] [ ]














+
<

−
+−

++

+
≥

−+−
+

<

==

−

−

µ
λλ

λµ
λµλ

µ
λλ

λλµ
λ

11

1
1

1
max

0
1

1

01

0
1

011

1

11

3

TsTs
run

Ts

Ts

Ts
run

stab

optimalstab

c
cifT

c
cc

Tt

c
cifT

ccc
c

t

Tdelayift

TTt  (42) 

When the number of servers is very high (c1→∞), tstab-3 will have a minimum theoretical value of (43). It 

measures the time to redistribute the clients accumulated and not processed until trun. The redistribution of 

clients introduces a maximum bound on the stabilization time, which did not exist previously. 

( ){ } [ ]
[ ]( ) ( ) run

Ts

Ts
runoptimalstab tc

cTtTTt 






+−=++==− µλ
µ

λµ
λ

0

0
3 2

221
1min  (43) 

The model presented above can be extrapolated for values of T different from trun. The system only 

exhibits a step variation after trun, with a succession of intervals of duration T, when trun-κ is a multiple of 

T. On this case, the value of λT(t) grows according to equation (37) until trun. On this scenario the difference 

equation deducted in the appendix is still valid, requiring only a new value for λTs[1] (44), which by 

definition is equal to the redistribution rate at instant trun. When the quotient is not an ordinal number, the 

λT(t) variation intervals will not be synchronized with the starting of the new replicas. Nevertheless, we 

also use the same approximation for this case. 

[ ]( ) [ ]( ) ( )
T

Tt
TTT clone

optimalTsoptimalTs
)(

11
κ

λλ
−

≈<  (44) 

The adaptation of the previous model for values of T greater than trun is more complex, because λT(t) is 

nonzero only after trun and the queue has to grow larger in order to start redistribution. If T is above 

max{delay1}(30), then the system behaves as if clients were not redistributed. Otherwise, it will have an 

intermediate behavior between the two models. Clients start going back to the location service at instant 

toffset (45) (remember that when T= Toptimal (38), toffset= trun). We approximate this system with a modified 

version of the previous model, where toffset defines the border for the first interval. In this first interval, 

servers receive an average rate of λ/c0 clients/tic from zero until trun and λ/c1 from trun until toffset. The 



 

 22

remaining intervals have a constant length of T tics. Although λT(t) is not constant during each interval, in 

the approximated model we consider it equal to the average value. λTs[1] is the average rate of λT(t) during 

the second interval (46).  

T
c

TTtoffset µλ
λκ

0

)(
−

=+=  (45) 

[ ]( ) 







−+








−≈> µλλ

λ
110

111
cT

t
ccT

t
TT offsetrun

optimalTs  (46) 

The stabilization time can be calculated using (47), an extension of (42) using the above approximation. 

It simply takes into account the real duration of the first interval.  

( ) offsetrunstabrunstab ttttTt +−≈> −− 33  (47) 

It is impossible to calculate the exact client delay on this scenario because clients may return several 

times to the location service before they actually run the application. If (41) is verified and T = Toptimal (38), 

then clients return one time at the maximum to the location service (with a probability of c0µ/λ), and they 

may re-enter on an already loaded server (with probability c0/c1) or on one of the new servers (with 

probability 1-c0/c1). If equation (41) is not verified, then clients may timeout successive times (with 

probability 1-c0µ/λ for each time). On this case the stabilization time plus the processing time (1/µ) can be 

used as a higher bound for the maximum client delay. 

F. Distribution algorithm performance comparison 

Figure 5 shows the evolution of the stabilization time for the algorithm with client redistribution in 

function of the total number of servers (c1), for c0=1 server, λ=625 clients/tic, µ=100 clients/tic, trun=1 tic 

and T= Toptimal= 0.84 tic. It also shows the stabilization time for the two algorithms without redistribution, 

and the optimal stabilization time. The stabilization time with client redistribution (tstab-3) has a much better 

performance than the stabilization time with balanced initial name resolution (tstab-2), and does not need 

network resources for load information. The stabilization time with client redistribution follows closely the 



 

 23

optimal stabilization time (tstab-optim) until 13 servers. The minimum distance occurs at 12.3 servers, the 

threshold value defined by (41), which defines the optimal configuration value. For values of c1 above (41) 

the tstab-3 stays in the proximity of T+trun. The stabilization time with balanced initial distribution only 

follows closely the optimal stabilization time for very high loads (near 7), where the stabilization time is 

enough to balance the load on the new and on the initial servers. For higher values of c1, tstab-2 stabilization 

time is strongly influenced by the load on the c0 initial servers, converging to the same limit as tstab-1, six 

times above the optimal stabilization time. 

 

Figure 5: Stabilization time in function of c1 for c0=1, λ=625, µ=100, T=0.84 and trun=1 

Figure 6 shows the evolution of the stabilization time with client redistribution in function of T, for c0=1 

server, c1= 13 servers, λ=625 clients/tic, µ=100 clients/tic and trun= 1 tic. It shows the strong influence of T 

on the stabilization time. It follows approximately the optimal stabilization time when T is below Toptimal 

(38). For higher values, tstab-3 increases because client redistribution is delayed, reaching the value of tstab-1 

(uniform distribution without redistribution) for T values above 5.26 (T is above the maximum client 

delay). The figure also shows the model approximation error: the expected behavior would be a smooth 

line between Toptimal and a point somewhere on the tstab-1 line. The error increases with the value of T, and 

produces a discontinuity when T reaches the maximum delay. Toptimal defines the best configuration because 

7 11 15 19 23 27
0 
2 
4 
6 
8 

10 
12 
14 
16 

tstab-1 
tstab-2 
tstab-3 
tstab-optim 

Stabilization time

c1

[ti
c]

 



 

 24

lower values of T produce more overhead at the location service without better performance.  

 

Figure 6: Stabilization time in function of T for c0=1, c1=13, λ=625, µ=100 and trun=1 

Figure 7 shows the evolution of the stabilization time for the four algorithms in function of the initial 

number of servers (c0), for c1=13 server, λ=625 clients/tic, µ=100 clients/tic, T= 0.84 tics and trun= 1 tic 

(the optimal configuration for one initial servers identified above). Clients are only redistributed for values 

of c0 below 4, otherwise the client delay does not reach T tics. The figure shows that client redistribution 

(tstab-3) is an effective way to control the stabilization time, which is particularly effective for load peaks 

near the configured scenario. Although the load peak on each server is more severe for a lower number of 

initial servers, the better stabilization time is due to an earlier redistribution of clients (toffset decreases when 

c0 increases(45)). The balanced distribution of clients (tstab-2) shows very good stabilization times when c0 

grows. However, it only indicates that for this amount of load the initial servers are able to handle the client 

before T. When they are not, c0<3, the load balancing mechanism alone is not enough to reduce the 

stabilization times. 

0.001 1 2 3 4 5 6 7 8 9 10 11 12
1
2
3
4
5
6
7
8
9

10
11
12

tstab-1 
tstab-2 
tstab-3 
tstab-optim 

Stabilization time

T [tic]

[ti
c]

 



 

 25

 

Figure 7: Stabilization time in function of c0 for c1=13, λ=625, µ=100, T=0.84, trun=1 

V. SIMULATION RESULTS 

A. Simulated Network 

The analytical model presented on the previous sections uses several simplifying hypotheses, in order to 

lower the calculus complexity. The more unfeasible hypotheses on a real system are the exact load 

distribution through all the server replicas and the instantaneous location service. In order to study the 

system performance on a real system we developed a system simulator using Ptolemy simulation system 

[Pto97]. 

The simulator implements all the application deployment algorithms and a dynamic location service 

[Ber99], which is also adaptive to load peaks. The simulation results presented in this paper did not use this 

dynamic feature of the location service to avoid masking the application server own features. A static 

hierarchical location service, with three hierarchical layers was used instead. Servers register their 

interfaces on the first level location servers, which propagate registration resumes upwards creating 

information links on the upper layers. Searches are conducted hierarchically. Clients look up for AUIs 

searching location servers from the first hierarchical level upwards until they get an information link, and 

then follow the link downwards to the location server with a reference to the application server. No caches 

1 2 3 4 5 6
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

tstab-1 
tstab-2 
tstab-3 
tstab-optim 

Stabilization time

c0

[ti
c]

 



 

 26

are used on the location service, in order to reduce the effective application server clone creation time.  

All simulations were conducted on a meshed network with 625 active nodes where applications and 

location servers run. Each node has an average of 3 connections to its neighbors, and the network has a 

maximum distance of 24 node hops. The location service used has 75 location servers at the first 

hierarchical level, five at the second and one at the top. Each location server can process 10,000 lookups 

per tic. The simulations presented in this paper evaluate the behavior of the applications when, starting at 

instant one (tic), a total load of 625 application clients per tic (uniformly distributed on the network) try to 

run the application with a single starting application server. The simulation time lasted 100 tics. During the 

simulation, the application servers adapt to the load accordingly to the algorithm presented in section II. 

Application servers measure the processor utilization time during intervals of 0.5 tic and test the average 

load after each measurement interval (using 50% for α). They react when the average load is above 99% or 

below 30%. They also measure the client request queue and react when it goes above the threshold, with 

β=1. Application server clone creation time (tclone) is equal to one tic. 

B. Results 

In order to test scalability, we analyzed the behavior of the system with three different values for 

application servers request processing time (1/µ of 0.01, 0.1 and 0.2 tics, corresponding to S01, S1 and S2). 

MaxCliQ was set to a low value in order to get a very fast response and T was set to one tic. Figure 8 shows 

three values measured during the experiment: (max{delay}) the maximum time experienced by the slowest 

client to run the application (measured from the instant the client is created to the instant when it stops 

running); the stabilization time; and Processing Capacity Ratio (PCR). The PCR defines the ratio between 

the total processing capacity available in the system (µ × number of servers) and the client request rate (λ). 

Since the application and location service queues never reach zero, the stabilization time is measured when 

the total number of pending requests is below the average arrival rate of new request during a load 

measurement interval (312 requests). Figure 8 also shows the corresponding analytical values calculated 



 

 27

using the model of section III, respectively T01, T1 and T2. 

Figure 8 shows that if no bandwidth limitations are present, the system scales well with the service 

processing time. The stabilization time and the maximum delay do not increase with 1/µ. Notice that the 

stabilization time improves significantly from S01 to S1 with the increase of the load in contradiction with 

the analytical model (T1 is only slightly better than T01). What happened was that S01 originates a smaller 

number of server replicas (an average of 15), whereas S1 and S2 originate a larger number of replicas 

(respectively an average of 141 and 255), producing some unbalancing in the server distribution on the 

network. This unbalancing influences the client load distribution (it minimizes the distance), and the 

number of application servers created. The use of a small value for MaxCliQ allowed us to have the 

maximum client delays below 7 tics (5 tics for S1 and S2), but originated a higher value for the PCR 

compared to the analytical model – the probability of the queue length being above two is high (especially 

in the presence of unbalanced load), originating the creation of additional replicas. 

 

Figure 8: Simulation results (S) and theoretical values (T) for λ=625, c0=1, tclone=1, MaxCliQ=2, 
β=1, T=1, and for µ=100 (01), µ=10 (1) and µ=5 (2) 

We also analyzed the influence of the clone creation time in the performance of the system, with values 

of tclone ranging from 0.01 to 10 tics. MaxCliQ was set to ten and T was set to 1.5 tics. Figure 9 shows the 

analytical (lines) and measured average (bars) values for: (tstab) the stabilization time; (max{serv}) the 

maximum number of servers; (tsetup) the time to deploy the minimum number of servers needed to handle 

the load (TSKA1). For the measured values, the figure shows the average value, and the minimum and 

0 1 2 3 4 5 6 7 8

max {PCR} 

tstab [tic] 

max {delay} 
[tic] 

T2
S2 
T1
S1 
T01 
S01 

[tic]



 

 28

maximum values measured for each configuration. It shows a strong influence of tclone on the measured 

values, which was already predicted in the analytical model. tclone is the main factor that defines the best 

possible performance, which can only be compensated by a higher initial number of application servers 

(c0). The analytical setup time values follow closely the measured values, because the clone creation 

decision is a local decision on the initial replica. However, the load unbalancing and the location service 

processing limitations influence both the stabilization time and the number of servers. The theoretical 

symmetrical model fails to capture the dynamics of temporary imbalance, due to the concentration of 

requests on “near” servers. The proposed algorithm handles the imbalance creating new servers in response 

to a high average load, or to a peak of requests above MaxCliQ (on the new servers). This results on a 

higher peak number of servers and on a slightly larger stabilization time. Notice, however, that the 

theoretical value for tstab fall within or near the lower bound of the measured values.  

 

 

Figure 9: Simulation results and theoretical values (theo) for λ=625, c0=1, µ=100, MaxCliQ=10, 
β=1, T=1.5, in function of tclone 

VI. CONCLUSION 

This paper studied the performance of an application that receives a peak of client requests, and self-

adapts to the load creating replicas. It shows that when applications composed by independent servers run 

the algorithm proposed on this paper on a network with no bandwidth problems, the application adaptation 

1 

10 

100 

0,01 0,1 1 5 10

tclone[tic]

[ti
c]

 

0
5
10
15

20
25
30

[n
. s

er
v]

 tsetup 
tstab 
max{serv} 

tsetup theo 
tstab theo 
m{serv} theo 



 

 29

is bounded in time and the clients delay is also bounded. It also shows the importance of the middleware 

component responsible for assigning clients to servers – the location service. 

Several papers enforce the importance of the balancing of the load on the performance of a system 

[She98][Bil97][Col98]. On this paper we showed that the redistribution of the existing clients is more 

important than the balancing of the load when the number of servers varies. It is a cheap mechanism that 

only uses local interaction. The middleware role consists simply on distributing the load by minimizing the 

distance, thus reducing the usage of network core links and core routers. With a suitable configuration its 

performance is similar to a system with a single processor with the same total processing capacity. We 

showed that a load balancer with ubiquitous load knowledge performs worse than a system with 

redistribution. But, anyway, the former is impossible to implement (due to the aging of load information). 

The analytical model also helps to define an initial configuration for the algorithm parameters. 

Simulation results showed that even with some unbalancing, the application scales with the client load, and 

is capable of assuring predictable bounded client delays. The most important parameter is the clone 

creation time. It includes not only running the application server, but also making its interface reference 

known in the network. If caching is used [Alb01][Ste98], the new application servers will be known only 

when the previous cached values become invalid, making things worse. 

Section II.B presented the main ideas to support the proposed system. They can be implemented with 

mobile agent platforms, grid computing system, distributed component systems with mobility support, etc. 

However, the proposed system introduces new requirements to the middleware, which are not supported by 

the existing systems. Namely, avoiding caching. 

APPENDIX 

This appendix makes a theoretical analysis of the system behavior on the conditions described in section 

IV.E (when clients return to the location service after waiting T tics on a server queue). At instant zero a 

constant flow of λ client requests per tic start arriving at a resting system, and at instant trun c1-c0 new 



 

 30

servers start running, with c1µ>λ>c0µ. When T = Toptimal, the system behavior evolves in a sequence of 

intervals of duration T (except the first one), which can be modeled by a discrete model. 

The rate of clients returning to the location service from one server is given by the input rate on the 

previous interval minus its processing capacity rate (λTs[n]= x[n-1]-µ). The total rate of clients returning to 

the location service will be λTs[n] multiplied by the number of active servers. We can write the input rate 

on a single server at interval n in function of the value at interval n-1 (48), because the new clients request 

rate is known (λ). x[0] includes a scaling factor to compensate for the fact that the first interval until trun is 

slightly wider than the others. Notice that x[n] decreases for values of n greater than one, until the interval 

where the system stabilizes (the Heaviside function is zero when x[n-1] is below µ).  

[ ] [ ]( )
[ ]( ) [ ]( )












>−−×−−+

=−+

=×

=

111

10

0

1

1

0

1

0

nifnxunxc

nifxc
c

c

nifT
t

c

nx

run

µµλ

µλ

λ

 (48) 

Equation (48) can be resolved applying unilateral Z transform to the third element of the equation, 

modified by a variable shift (p = n-2). The resulting Z transform is (49). By inverting the Z transform and 

the variable shift we get the solution for x[n] (50). 

( )
[ ]

121

1

1
1

1
)( −− −

−
+

−

−
=

Z
x

Z

cZX
µλ

 (49) 

[ ] [ ] [ ] ( ) [ ]2111
1

−−




 −+−= nuncnuxnx µλ  (50) 

The variation rate on the server's queue length is related to the difference between the input rate (x[n]) 

and output rate of client requests (µ and λTs[n]) on each server queue. Equation (51) presents the variation 

rate (v[n]) on the interval [nT , (n+1)T], where nstab defines the number of the interval where the system 

becomes stable. It is calculated using [ ]( )
( )






−
−+=

1

11
c

stab
xceiln λµ

µ , where ceil returns the smallest 



 

 31

integer above a value. 

[ ]

[ ]
[ ]













>

>≥−

=




 −+−

=

=

stab

stab

T

T

nnif

nnifc

nifc
c

c

nif

nv

0

1

111

01

1

1

0

1

µλ

λµλ
λ

 (51) 

The evolution on the number of requests on a queue can be obtained by integrating v[n] over time (52), 

except for the first interval, which must be rescaled. A simplified version of this equation is presented on 

(40). 

( )
[ ]

( )( )
( )( )[ ] ( )( )( )

[ ]









≤

>−−×−+−+







×

=
∑
−

=

run
run

runrunrunrun

Tttfloor

i
s

ttt
t
Tv

tttTttfloorTtTttfloorvTiv
tm

run

i

0

1
0  (52) 

REFERENCES 

[Alb01] Albitz, P., Liu, C., "DNS & BIND 4th Ed."; O’Reilly &Associates Inc, Apr. 2001. 

[Bes97] Bestavros, A., "WWW Traffic Reduction and Load Balancing through Server-Based Caching", IEEE Concurrency, Vol. 

5 No. 1, Jan.-Mar. 1997, pp. 56-66. 

[Ber98] Bernardo, L., Pinto, P., "Scalable Service Deployment using Mobile Agents", Proc. of the 2nd International Workshop 

on Mobile Agents (MA’98), Springer LNCS Vol. 1477, Sep. 1998, pp. 261-272. 

[Ber99] Bernardo, L., Pinto, P., "A Scalable Location Service Supporting Overload Situations", Proc. Workshop Artificial 

Intelligence for Distributed Information Networking (AiDIN'99), AAAI Technical Report WS-99-03, Orlando, 

USA, Jul. 1999, pp. 51-56.  

[Bil97] Billard, E. A., Pasquale, J. C., "Load balancing to adjust for proximity in some network topologies", Parallel Computing, 

Vol. 22 No. 14, Mar. 1997, pp. 2007-2023. 

[Col98] Colajanni, M., Dias, D., e Yu, P. S., "Analysis of Task Assignement Policies in Scalable Distributed Web-Server 

Systems", IEEE Trans. Parallel and Distributed Systems Vol. 9 No. 6, Jun. 1998, pp. 585-600. 

[COR02] OMG, "CORBA 3.0.2 specification", formal doc. 2002-12-06. 

[Cur02] Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S., "Unraveling the Web Services Web: An 

Introduction to SOAP, WDSL, and UDDI", IEEE Internet Computing Vol. 6 No. 2, Mar.-Apr. 2002, pp. 86-93. 

[Cza01] Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman., C., "Grid Information Services for Distributed Resource 

Sharing", Proc. 10º IEEE International Symposium on High-Performance Distributed Computing (HPDC-10), IEEE 

Press, Aug. 2001. 

[Ghe97] Ghezzi, C., Vigna, G., "Mobile Code Paradigms and Technologies: A Case Study", Proc. 1st International Workshop on 

Mobile Agents (MA’97), Springer-Verlag LNCS Vol. 1219, Berlin, Germany, April 1997, pp. 123-135. 



 

 32

[Guy95] Guyton, J. D., Schwartz, M., "Locating Nearby Copies of Replicated Internet Servers"; Proc. Conference on 

Applications, technologies, architectures, and protocols for computer communication (SIGCOMM'95), ACM Press, 

Cambridge, USA, Aug. 1995, pp. 288-298. 

[Kri00] Krishnamurthy, B., Wang, J., "On Network-Aware Clustering of Web Clients", Proc. Conference on Applications, 

Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM'00), ACM Press, Stocholm, 

Aug. 2000, pp. 97-110. 

[Kun91] Kuntz, T., "The influence of Different Workload Descriptions on a Heuristic Load Balancing Scheme", IEEE Trans. 

Software Eng. Vol. 17 No. 7, Jul. 1991, pp. 725-730. 

[Mil99] Milojicic, D., Douglis, F., Wheeler, R., "Mobility - Processes, Computers and Agents ", Addison-Wesley Longman Inc., 

1999. 

[Pap84] Papoulis, A., “Probability, Random Variables, and Stochastic Processes 2nd Edition”, McGraw-Hill, Inc., 1984. 

[Pto97] Ptolemy project home page, Dep. Elect. Eng. Univ. Berkeley, Ptolemy Classic (version 0.7). Available on 

http://ptolemy.eecs.berkeley.edu/. 

[Sch00] Schroeder, T., Goddard, S., Ramamurthy, B., "Scalable Web Server Clustering Technologies", IEEE Network Vol. 14 

No. 3, May-Jun. 2000, pp. 38-45. 

[She98] Shehory, O., Sycara, K., Chalasani, P., Jha, S., "Agent Cloning: An Approach to Agent Mobility and Resource 

Allocation", IEEE Communications Vol. 36 No. 7, Jul. 1998, pp. 58-67. 

[Ste98] Steen, M., Hauck, F. J., Homburg, P., Tanenbaum, A. S., "Locating Objects in Wide-Area Systems", IEEE 

Communications Vol. 36 No. 1, Jan. 1998, pp. 104-109. 

[Ste99] Steen, M., Homburg, P., Tanenbaum , A. S; "Globe: A Wide-Area Distributed System", IEEE Concurrency Vol. 7 No. 

1, Jan.-Mar. 1999, pp. 70-78. 

[Tah82] Taha, H.; "Operations Research - an introduction  3ª ed."; MacMillan Publishing Co. Inc., 1982. 

 


