
SEARCHING FOR RESOURCES IN MANETS:
Improving flooding efficiency in 802.11

Keywords: performance analysis of wireless ad hoc networks, searching service, clustering protocol

Abstract: Searching algorithm's performance for mobile ad hoc networks depends strongly on the routing and MAC
protocol characteristics. MANETs unreliability and routing costs prevent the use of central servers or global
infra-structured services on top of a priori defined virtual overlay networks. A flooding approach over a
virtual overlay network created on-demand performs better. A clustering algorithm is required for densely
populated networks in order to avoid the broadcast storm problem. This paper proposes two new clustering
and searching algorithms using 1-hop and 2.5-hop neighborhood information. It presents a set of simulation
results on the clustering efficiency and on searching efficiency for low movement and for high movement,
showing that the algorithm performance is acceptable for both scenarios.

1 INTRODUCTION

The problem of looking for resources on 802.11
Mobile Ad hoc NETworks (MANETs) is complex
due to the networks unstable nature. Nodes move
around independently creating a very dynamic
network topology. It is assumed that no geographic
position information is available, which is most of
the time true indoor. On these conditions, standard
proactive, table-driven, routing protocols (e.g.
DSDV (Bhagwat, 94)) have worst performance than
on-demand routing protocols (e.g. AODV (Perkins,
99), DSR (Johnson, 96), ABR (Toh, 97), etc.), which
flood the network looking for an address only when
it is needed. The problem is that routing information
becomes outdated too fast, especially for lengthy
paths. Due to bandwidth restrictions, it is not
feasible to maintain the tables always updated - it is
preferable to updated only when needed, possibly
flooding the entire network with route lookup
packets at that time.

The searching protocol performance depends
strongly on the lower layers of the protocol stack,
responsible for routing IP packets, and for handling
the Medium Access Control (MAC). Traditional
directory (e.g. LDAP (Howes, 98)) and peer-to-peer
(P2P) services (e.g. Pastry (Rowstron, 01), Tapestry
(Hildrun, 02), Gnutella (Clip2, 02), FastTrack
(FastTrack, 01)) create virtual overlay networks.
They are formed by several nodes connected using
static TCP links. Their performance drops sharply
on a MANET if the virtual overlay topology in not
similar to the network physical topology, due to the
routing protocol overhead. Crossing several virtual
links may imply flooding several times the physical
network after topology changes. An obvious
alternative is to short-circuit the MANET routing
protocol and to flood the searching protocol's query

message directly using multicast or broadcast (e.g.
ad hoc mode of the JXTA rendezvous protocol
(JXTA, 04)). However, two problems may occur:
the 802.11 MAC layer is more error prone for
multicast/broadcast packets than for unicast packets
and dense networks may suffer from the broadcast
storm problem (Tseng, 02). An additional feature
required for replicated resources is that searching
must return the nearest replica. It is extremely
important to reduce the number of hops on a
communication, and when possible, to preload the
MANET routing tables during the resource search
phase.

This paper presents a new searching algorithm
for MANETs, which has an interesting trade-off
between reliability and efficiency, and that locates
the nearest replica for replicated resources. It is
optimized for very dynamic continuous MANETs. It
does not handle the extreme case of delay tolerant
applications on MANETs scattered on several
islands, where a pure packet store-and-forward
approach is required (Zhao, 04). Section two
presents an overview of existing searching services
and related work. Section three analyses the main
trade-offs when designing a searching service.
Sections four and five present the proposed
clustering and searching protocols. Section six
present the ns-2 simulation setup, and an evaluation
of the proposed protocols using several simulation
results. Finally, section seven draws some
conclusions and presents future work directions.

2 SEARCHING SERVICES

Searching services may be classified in two big
classes, regarding on how searching is performed: it
either uses guided search to a specific node, or a
flooding approach. The first approach is used for
structured P2P services (e.g. Pastry, Tapestry, etc.)

and for directory services. Index information is
stored on a subset of the nodes, where each node is
responsible for a subset of the index database. The
protocol also creates routing information that can be
use to route search queries to the responsible node.
This approach has low performance for ad hoc
networks because: a) the maintenance of the routing
tables is costly on unstable networks (Bernardo, 04);
b) it is inefficient to concentrate index information
on a potentially unreliable node. Although, some of
the structured P2P network organization features
were used by other authors on MANETs. DPSR
(Charlie, 03) trades off memory usage by increased
probability of route path failure: nodes do not store
in cache the complete path to all destinations, but
only a subset of the paths, accordingly to the Pastry
information structure. KELOP (Bashir, 03) uses the
routing layer caching information and loose
coherence caching mechanisms to improve the
structured P2P performance on MANETs. However,
these two mechanisms fail for very dynamic
networks.

A flooding approach is more adapted to
MANETs due to the null registration costs. All
efforts are concentrated during the search phase.
Flooding can be done over an a priori defined
overlay network (e.g. Gnutella), or directly over the
network layer, without using the address routing
protocol (e.g. JXTA rendezvous protocol). On this
later case, the overlay network is created on demand:
the query message includes the path traveled; when
the resource is found, the hit message follows the
path stored in the query message. This approach
assumes that networks do not change during a
search. However, this hypothesis may fail for high
mobility scenarios. Additionally, this simple
approach may also fail for dense MANETs, because
of a high number of concurrent accesses to the
shared medium, similar to a storm. In order to
handle the broadcast storm (Tseng, 02) only a subset
of the nodes must retransmit the search query
message. This set of nodes is usually called a
connected dominant set (CDS), and their broadcast
region must cover the entire set of nodes. The
remaining nodes should have a passive role,
generating hit packets only. A new algorithm is thus
introduced – a clustering algorithm that group nodes,
and using a set of heuristics elects broadcast group
leaders (BGLs), responsible for forwarding packets
for their broadcast group (BG). In order to collect
information about the neighborhood, most
approaches require that each node periodically
broadcasts a beacon packet. (Wu, 03) presents a
taxonomy for clustering based flooding algorithms,
where it classifies the algorithms accordingly to the
state information used. Clearly, due to the inherent
network instability, it is not possible to use global

state information, nor any algorithm that requires a
significant subset of global state information to
create a CDS. The information state should be local,
or quasi-local, using information about the node's
neighbors (1-hop), or at most, its neighbor's
neighbors (2-hop or 2.5-hop) to reduce the number
of active nodes. These approaches differ on what
information is included in the beacon: 1-hop sends
only local information; 2-hop includes information
about its neighbors; and 2.5-hop includes
information about its neighbors BGL, which may be
3 hops distant. (Dai, 04) presents a thorough study
for algorithms in low diameter extremely dense
networks (it analyses 160 nodes on a network
diameter of three hops). It concludes that algorithms
using more neighbor information perform better.
However, it fails to analyze what happens when the
network diameter grows, and the routing redundancy
importance grows. (Kozat, 03) proposes a flooding
search approach where a 2.5-hop algorithm is used
to define the CDS. However, it tries to create a
minimum spanning tree using PRUNE packets,
possibly introducing high signaling overhead for
unstable network. Every modification on the
network may change the spanning tree
configuration.

3 TRADE-OFFS

Designing algorithms for potentially unstable
mobile networks is completely different from
designing them for static networks with fail silent
nodes (e.g. wired networks). It is not advisable to
base search on a minimum CDS (MCDS), which
connects a minimum spanning tree, because it can be
too costly to maintain updated the MCDS.
Beaconing adds to the searching cost a constant cost
(K) in bytes per second per node, proportional to the
beacon frequency. It is only worthwhile to use
beaconing when the result of the sum is below the
cost without using clustering (L). If α is the fraction
of nodes which are BGL, and N is the expected
number of active queries in parallel, then the
beaconing cost must always satisfy equation 1.

 K < N.L.(1 - α) (1)

Therefore, equation 1 limits the maximum
beacon frequency. This implies that: a) it is possible
that some old neighbor moved after sending their
last beacon; b) it is possible to have black nodes on
the neighborhood, which have not sent any beacon
yet. Therefore, the CDS must have moderate
redundancy, allowing it to cope with inaccurate
neighborhood information and with search packet
loss. A 1-hop strategy is more redundant (has a

higher α) because it can only decide to forward
packet based on the visited nodes and on the
neighbors. A 2.5-hop strategy can select which
neighbors resend the packet on the 2-hop range.
However, it is more sensible to outdated
information. The relative performance of 1-hop and
2.5-hop algorithms depends on the network
instability level.

A second trade-off relates to the use or not of
unicast packets. Clearly, multicast packets have
several advantages over unicast packets: they send
packets to unknown neighbors; they lower the
network load when sending packets to several nodes
within radio range. They also have a disadvantage:
they are more unreliable since no confirmation is
used for multicast packets on DCF (distributed
coordination function) mode of 802.11 MAC.
Unicast uses MACAW protocol, which uses a
RTS/CTS exchange to reserve a time slot for
sending packets (avoiding the hidden node
interference problem that exists on multicast), It
retransmits packets in case of failure. Unicast can be
used while sending hit packets, or while flooding
packets over the network defined by the clustering
algorithm. However, beacons are always sent using
multicast, and since their transmission is unreliable,
then the clustering information is also potentially
unreliable. This problem may affect clustering
efficiency on a network near broadcast storm
situation, where a significant percentage of beacons
may be lost. This is a second reason not to increase
the beacon frequency indefinitely, and to use
preferentially multicast packets to flood the network.

A final trade-off relates to how clustering is
made. Classical clustering approaches (Dai, 04)
group nodes using the node identification or node
degree (the number of neighbors) to define groups
and select the BGL. On this paper we propose
another approach inspired on ABR (Toh, 97): to
base clustering decisions on beacon stability. The
rational for this approach is that: there is a strong
probability that a link remains stable during the next
interval if the link nodes stay within radio range
during a minimum interval of time. This clustering
approach detects these groups of nodes moving
coherently, and form stable clusters with them.
Unstable nodes on the neighborhood are treated as
second class members, which may not lead the
cluster. For instance, a group of executives on a van
form a MANET with only stable nodes, because
they are all stable in relation to each other. However,
they are moving in relation to nodes external to the
van.

4 CLUSTERING ALGORITHM

The proposed clustering algorithm creates
groups with a maximum diameter of 2 hops based on
beacon stability and on the node identification, as a
second criterion. It can be classified as 1-hop
clustering, since it is uniquely based in a beaconing
scheme. Each node periodically sends a beacon
message. All nodes that receive a beacon from a
determined node are defined as neighbor nodes. In
figure 1, dashed lines represent links with neighbor
nodes.

Fig. 1. Illustration of a MANET with 3 BGs.
Nodes 1, 5 and 6 are BGLs.

Nodes are grouped according to their link

stability η. Link stability is defined as the sum of
consecutive beacons received from a determined
neighbor. If more than one beacon is lost, then link
stability is set to null. High stability values represent
low nodes mobility and vice-versa. All nodes have a
beacon table that is used for BGL election. For a 1-
hop searching algorithm, in each beacon message a
node sends its node identification, its BGL node, and
the higher link stability value contained in its beacon
table, which is represented by µ.

Beacon messages are broadcasted and when a
new beacon is received, the receiving node identifies
its source neighbor. If the receiving node beacon
table contains an entry associated with that source
neighbor, then it increments η value and copies BGL
and µ contained in the beacon message to the table
entry. If not it creates a new entry with BGL and µ
contained in the beacon message and η value equals
to 1. Every beacon table entry is automatically
destroyed if a beacon is not received during two
beaconing time periods. Table 1 is a hypothetical
beacon table of node 3 illustrated in figure 1. Node 3
received 43 beacons from neighbor node 1. A node
can elect itself as its BGL, as is observed with
neighbor 1. The algorithm converges frequently to a

set of connected BGLs, as represented in figure 1, or
where BGL are separated by one non-BGL when
networks have higher connectivity. Node's 5 BGL is
node 1, but node 5 is also a BGL elected by node 4.
The subset of BGL plus the non-BGL nodes
connecting BGLs define a backbone, which can be
used to broadcast packets on a stable set of nodes.

Neighb. Stability -

η
BGL Neighb.

Stability - µ
1 43 1 43
2 8 6 64
4 2 5 33

Table 1. Beacon table of node 3 on figure 1

A node is stable if there is at least one η value

contained in its beacon table that is higher than a
defined stability_threshold. BGL election
algorithm is performed on each node after a new
beacon reception. The election algorithm is
summarized in figure 2. In line 1, it computes the
maximum values of η and µ contained in the beacon
table. An unstable node cannot be elected as BGL
but it can elect its BGL, since it has one or more
stable nodes in its neighborhood. In this case it is
elected the neighbor with highest µ value (algorithm
lines 25 to 30). If it does not have stable neighbors,
the BGL field is left empty. For a stable node, first it
is computed a sort list of all available neighbor's
BGL (lines 5 to 7), that includes the node in case of
being BGL (lines 8 to 9). This list is sorted from the
smallest to the largest BGL address. Having some
elected BGL in the neighborhood, the key idea is
choose a stable neighbor node that has the lowest
address and is also a BGL (lines 11 to 15), or choose
the node itself if there are no lower BGL node’
address in its neighborhood (lines 16 to 18). If there
are no BGLs elected in its neighborhood, a node
simply elects its neighbor with the highest η value as
its BGL (lines 20 to 24). If there is more than one
neighbor pursuing the maximum η value then it is
elected the node with lowest address.

Cluster overlapping can occur in result of
sticking together several 1-hop radius clusters into a
wider cluster. Usually the BGL is also a member of
another group when BG has a single neighbor BG,
as presented in figure 1. During system startup, a
transitory overlap may also appear, because the
initial criteria for selecting BGL is link stability
(lines 21 to 23), which possibly is different from
node to node. However, on this last case, when
several BGLs exist for a set of stable nodes within
radio range, they are merged into a single cluster
(lines 10 to 18) after one beacon period. Two nodes
from overlapped clusters sort neighbor's BGLs

independently into the same order and converge to
the same BGL. A node that receives n new beacons
must receive all of them during the beaconing
period, but they can be delivered with different time
drifts (jitter). This instability does not affect the
initial BGL election, because transient_threshold
was set to one. Therefore, BGL is elected from a set
of nodes that contains not only the neighbors with
the higher stability value, but also all neighbors that
could get that stability value during the present
beaconing period.

1. (ηmax, µ max)=find_maximum_η_and_µ_values_in_
 neighborhood_table()
2. last_addr = MAX_INT
3. pre_elected = -1
4. if is_stable(na) // stable node
5. //insert all known BGL’s neighbor nodes
 //in n BGL_list
6. for each neighborhood_node nx
7. insert_in_sort_list(BGL(nx),BGL_list)
8. if is_BGL(na) // if this node is BGL
9. insert_in_sort_list(na,BGL_list)
10. // Choose BGL based on stability and
 // lowest address criteria
11. for each bglx contained in BGL_list
12. for each neighborhood_node nx

13. if ((nx=bglx)and(is_stable(nx)))
14. pre_elected = nx

15. if (pre_elected ≠-1) break;
16. if (na=bglx) // auto-election
17. pre_elected = na

18. break
19. // elect new BGL
20. if (pre_elected =-1)//BGL is not selected
21. for each neighborhood_node nx

22. if (ηmax-η(nx)-transient_threshold ≤ 0)
 ∧ (addr(nx)<last_addr)
23. last_addr = addr(nx)
24. pre_elected = nx
25. else // unstable node
26. // elect BGL if it is available
27. for each neighborhood_node nx

28. if (µmax-µ(nx)-transient_threshold ≤ 0) ∧
 (addr(nx)<last_addr)
29. last_addr = addr(nx)
30. pre_elected = nx
31. BGL_ELECTED = pre_elected

Fig. 2. Outline of BGL node election algorithm

applied in node na.

If a node stops the beaconing transmission

process, because of mobility or operational reasons,
each one of its old neighbors will take two
beaconing periods to detect its absence. During this
time period incorrect BGL elections may occur.
However, beacon loss can also result from message
loss due to congestion, producing false alerts.

A second version of clustering algorithm was
implemented to support 2.5-hop searching
algorithms. The only modification was the addition
of a neighbor's BGL list to the beacon message.
Notice that conventional 2.5-hop clustering

algorithms (Wu, 03) usually have must more
overhead because they send the entire list of
neighbors on the beacon.

This clustering algorithms performance depends
on the network stability. Its beacon period should be
selected accordingly to the nodes velocity, limited
by the maximum supported rate. If a large
percentage of the nodes are "stable", the algorithm is
able to detect them, and reduce their load by creating
clusters. If all nodes are unstable, beaconing only
introduces extra overhead. Notice however that non-
clustered searching algorithms are more immune to
errors. If conventional criteria were used, the
clustering algorithm would create highly unstable
clusters, which would include passing-by moving
nodes, and would root search packets based on this
error prone information.

5 SEARCHING ALGORITHM

This section proposes a new searching algorithm
based on the 1-hop clustering algorithm presented
above, tuned for very unstable networks. It also
presents an alternative 2.5-hop based searching
algorithm (with tuning optimizations similar to the
1-hop version). Both algorithms will be compared
on the next section.

The searching algorithm was developed as an
evolution of the basic source routing flooding
algorithm (SR): The lookup operation is started with
a query message originated by a node, which carries
a unique identification (Qid), its source node (nsource)
and the resource identification to locate (Rid). This
message is successively resent by each node, as long
as it has not been received before. Nodes maintain a
local table indexed by source node id, with last
query' ids received. A hit message is sent to the
source node when any local information satisfies the
query. Hits are routed to the query's node source
using the path included in the query message.
Bandwidth usage could be reduced if hit routing
information is store in the nodes (Clip2, 02).
However, this second approach is less reliable
because all up flow path is lost in case of node
movement or failure, whereas on the first, it can
jump a few nodes on the path.

The clustering algorithm classifies nodes has
BGL, or non-BGL. Eventually, the node can be
isolated, if is outside any BG, and thus it did not
elect a BGL. A node knows that it is a BGL when it
receives a beacon selecting him. The proposed
searching algorithm modifies SR in three ways:

a) BGL and isolated nodes always broadcast
queries one time, while non-BGL nodes
may inhibit its transmission, if they have

the certainty that all its neighbors had
already received the query;

b) The query path list size is reduced by
containing only BGLs, except for the tail,
which may have some non-BGLs;

c) Hit messages use flooding when the reserve
path fails.

In order to reduce the bandwidth usage, non-
BGL nodes use the neighborhood information
collected with the clustering algorithm, and the
query path list, in the query message (a). Two
approaches were proposed: using 1-hop or 2.5-hop
information.

Two modifications are common to the two
approaches above. The query path list shortening (b)
results from the addition of node storage of parts of
the total query path. The non-BGL node list at the
tail of the list is stored and pruned, each time the
message passes on a BGL. BGLs maintain in its
internal lists, the partial path with non-BGL from the
previous BGL, which may include several unstable
nodes. Since this information can be volatile, it can
be stored on a less secure place. In case of node
failure, the node can always use the BGL list (inside
the query message) to recover the route to the query
source. When hit messages follow the query reserve
path unicast is used and their sending is confirmed.
They retrieve the unstable list at each BGL, and
follow the reverse path. When a link fails, the node
looks at its neighbor list, and neighbor's BGL list,
looking for any node on the reverse path. As a last
resort, when no information is available, the node
that detects the failure starts a hit message flooding
(c). The hit message is treated as a special query
packet, looking for a node id within the remaining
query path list, which does not receive any reply. Hit
flooding stops when the message reaches a node
whose neighbor's (or the node itself) are part of the
remaining path. Therefore, contrary to SR, the
proposed algorithms are able to survive to extreme
mobility, and route hit messages over failed or
moving nodes.

A. 1-hop searching algorithm

The 1-hop searching algorithm proposed results
from an improvement of SBA (Peng, 00), which was
initially designed without clustering. Using the 1-
hop clustering algorithm, a node has information
about its neighbors' BGL. When a non-BGL node
receives a new query, it first queues the message in a
local buffer, creates a local variable with the list of
visited BGL, and starts a timer, for a fixed delay
plus a jitter interval. When the timer triggers, the
node checks to see if all neighbors' BGL and local
BGL are already listed in the visited BGL list. If
they are not, then it resends the message, to cover
the missing BGLs. Otherwise, it drops the message.

While the timer is active, it continues to receive
replicas of search messages resent by neighbors, just
for extracting the query path list, and to update the
visited BGL list. Since BGLs do not delay the
message and isolated nodes do, search path goes
preferentially over the BGL backbone. Due to the
timer's jitter, this approach limits the number of
retransmissions that occur on dense networks. The
first non-BGL transmission triggers the immediate
transmission of the missing BGL, shutting off all the
remaining transmissions.

This first algorithm does not guarantee total
coverage on unstable networks, because it does not
guarantee the coverage of black nodes (nodes in the
neighborhood that did not yet transmit a beacon). It
handles transmission errors similarly to SR, nodes
keep sending a query message as long as a BGL
does not appear on the path. This behavior may
originate load peaks after a node failure or
movement. Finally, it delays the search, compared to
the other algorithms analyzed on this paper.

B. 2.5-hop searching algorithm

For the 2.5-hop clustering algorithm, a node has
information about all BGLs and isolated nodes
within 2-hop distance. In order to reduce bandwidth
usage, each sending node puts in the query message
the list of non-BGL nodes at 1-hop distance (v) that
must resend the message. All BGL nodes always
resend the message. The message is sent by the
query starting node; by each BGL and isolated
nodes; and by the non-BGL nodes that are in list v.
List v is constructed from the set of 1 hop neighbors,
and includes the non-BGLs required to cover all 2-
hop distance BGLs. The algorithm: 1) first adds the
neighbor nodes with unique paths to a BGL; 2) then,
adds the neighbors that cover the maximum number
of BGLs not yet in the list. A minimum node
identification criterion was used to select from nodes
with similar number of BGLs accessible.

This second algorithm is more sensible to errors
in the clustering information, since it uses topology
information received one beacon period ago to select
on-demand the next hop for the query message
flooding. Since it reduces the flooding to a MCDS, it
also has less redundancy to tolerate transmission and
topology errors, compared to the other algorithms.

6 SIMULATIONS

To study the clustering algorithm performance for
different node densities, seven different simulation
scenarios were defined. In each scenario nodes are
moving during 10 simulation hours in a 1000m x
1000m area, using an improved Random Waypoint

mobility model (Yoon, 03). Mobility model
parameters are 0.1 m/s and 3 m/s for minimum and
maximum velocity, respectively and 3600 seconds
for pause time. Each node has approximately 100
meters of communication range, and its beaconing
frequency is 1 Hz. Using beacon reception
information, it was computed the average number of
nodes in the neighborhood, to compare with the
average number of nodes that elect the same BGL.
First simulation uses 75 nodes, and it was the lowest
node density value simulated. The average number
of neighbors is around 2 nodes, which states that the
optimum value for average BG dimension should be
around 3 nodes, counting 2 neighbors and the node
that detects the neighborhood. Simulation results
presented in figure 3 show that average dimension of
BG is approximately 3 nodes, which is closed to the
optimum value. In the following simulations, nodes’
densities were increased. Results show that average
number of neighbors will increase, as expected, but
the average of BG dimension will increase more
slowly because the standard deviation will be higher.
This is mainly because of BGs merging operation.
The average of nodes without election of was also
computed and is presented in table 2. Simulations
with lower node densities present higher average of
nodes without election of BGL, as expected. In high-
density scenarios, less than 1% of all nodes don’t
belong to any BG. Other important feature is that
average BGL election period will decrease for
higher density values, because the BGs dimension
increases which also increases the probability a node
leave the BG resulting in a new BGL election.

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

75 100 125 150 175 200 250
Node's density [nodes/km̂ 2]

[N
od

es
/s

]

Average BG dimension Average number of neighbors

Fig. 1. Average broadcast group dimension versus
average number of neighbors for 7 simulations. Lines
presented over the bars represent standard deviation.

The clustering algorithm performance for
different node mobility scenarios was also tested
using five different average node speeds for the
network above with 250 nodes, modeled using the

Random Waypoint mobility model. Figure 4 shows
that the clustering algorithm performance degrades
with the speed increase. It affects mainly the BGL
average election time that is reduced to about 5
seconds for an average speed of 40 m/s. The average
BG dimension stabilizes on an average size of three
members, for speeds above 20 m/s, proving that
some aggregation is still possible due to the node's
pause times.

Density
[nodes/km^2]

75 100 125 150 175 200 250

Without
BGL
[%nodes/sec]

12.1 7.8 4.0 2.2 1.2 0.9 0.2

Table 2. Average number of nodes without BGL, and
average BGL election period statistics.

0

1

2

3

4

5

6

7

8

9

1 10 20 30 40
Node's Average Speed [m/s]

[n
od

es
/s

]

0

5

10

15

20

25

30

tim
e[

s]

Average BG dimension Average number of neighbors
BGL average election time [s]

Fig. 4. Average broadcast group dimension and duration
versus node average speed for 5 simulations. Lines
presented over the bars represent standard deviation.

The three proposed clustering algorithms were
analysed for three extreme scenarios: low speed
MANETs (average speed of 1 m/s) and high speed
MANETs (average speed of 40 m/s), on the
conditions presented above. Figure 5 shows that the
two improvements proposed for the two clustering
approaches perform better than source routing for
both high and low mobility. The results are
disastrous for source routing for high mobility
scenarios because the answer message is lost when a
node on the path moves. Results for 2.5-hop
clustering information are also worst than 1-hop for
high mobility because clustering information is less
precise, and 2-5-hop approach uses this information
to control flooding. On the other hand, 1-hop
introduces a higher packet delay. For low mobility
scenarios, 2.5-hop clustering approach provides the
best performance, because it uses the lower number

of packets to flood the network, based of reliable
clustering information. Answer messages loss relate
to collisions, which are compensated by the flooding
approach for the clustering approaches.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Src. Rt 1m/s 2.5-hop 1m/s 1-hop 1m/s Src. Rt 40m/s 2.5-hop
40m/s

1-hop 40m/s

ra
te

[%
 q

ue
rie

s]

0,0

1,0

2,0

3,0

4,0

5,0

6,0

tim
e

[s
]

% Successful Queries % Query Loss
% Hit Loss End-to-End delay [s]

Fig. 5. Success rate and end-to-end delay for source
routing; 1-hop and 2.5-hop clustering algorithms for 2
node average speeds.

Figure 6 presents the total bandwidth load for the
conditions above. It shows that flooding based on
the clustering algorithm is capable of reducing the
total bandwidth usage on the network, for low node
mobility. When node mobility is high, clustering
approaches use flooding to compensate return path
loss, increasing the total load, and a higher number
of collisions.

0

10

20

30

40

50

60

Src. Rt 1m/s 2.5-hop 1m/s 1-hop 1m/s Src. Rt 40m/s 2.5-hop
40m/s

1-hop 40m/s

Lo
ad

 [b
yt

es
/(n

od
e*

qu
er

y)

0,0%

0,5%

1,0%

1,5%

2,0%

2,5%

3,0%

3,5%

4,0%

D
ro

p
Pa

ck
et

s
[%

 p
ac

ke
t

Beacon Load Flooding Load Total Load Collisions [%]

Fig. 6. Bandwidth load and collisions for source routing;
1-hop and 2.5-hop clustering algorithms for 2 node
average speeds.

7 CONCLUSIONS

This report proposes two new approaches for
searching on unstable MANET, supported on
positioning information provided by a clustering
algorithm. It shows that for high mobility scenarios,
performance improves for the algorithms the use the
least possible network information (1-hop). It also
shows that source routing approach fails for high
mobility scenarios. Since most MANET routing
protocols are based on source routing, this can
present an important problem for common
applications, not prepared to handle this kind of
instability.

This report presents on-going work. Further
study is being made on beacon overhead reduction
and beacon self-stabilization algorithms, which
reduce beacon collision effects. Further work is also
being done for searching algorithms for less unstable
networks, where a DHT approach may be used on
top of a stable virtual overlay network.

REFERENCES

Bashir, S., Li, B., 2003. KELOP: Distributed Key-Value Lookup
in Wireless Ad Hoc Networks. In 12th IEEE International
Conference on Computer Communications and Networks.

Bernardo, L., Pinto, P., 2004. A Scalable Location Service with
Fast Update Responses. In Proc. ICETE'04, Vol.1, pp.39-47.

Bhagwat, P., 1994. Highly Dynamic Destination-Sequenced
Distance Vector Routing (DSDV) for Mobile Computers. In
ACM SIGCOMM'94, pp. 234-244, ACM Press.

Charlie, Y., Das., S., and Pucha, H., 2003. Exploiting the synergy
between Peer-to-Peer and Mobile Ad Hoc Networks. In
Usenix HotOS-IX. Retrieved from http://www.usenix.org/
events/hotos03/tech/hu.html

Clip2. The Gnutella Protocol Specification v0.4 Rev. 2.3.
Retrieved October 11, 2002 from http://www9.limewire.com/
developer/gnutella_protocol_0.4.pdf

Dai, F., Wu, J., 2004. Performance Analysis of Broadcast
Protocol in Ad Hoc Networks Based on Self-Pruning. In.
IEEE WCNC'2004, pp. 802-807, IEEE Press.

FastTrack,. Peer-to-peer technology company. Retrieved 2001
from http://www.fasttrack.nu.

Hildrun, K., Kubiatowicz, J. D., Rao, S., Zhao, B. Y., 2002.
Distributed Object Location in a Dynamic Network. In
SPAA'02, 14th annual ACM symposium on Parallel
algorithms and architectures, ACM Press.

Howes, T., Smith, M. C., Good, G. S., Howes, T. A., Smith, M.,
1998. Understanding and Deploying LDAP Directory
Services. Macmillan Technical Pub.

Johnson, D., Maltz, D., 1996. Mobile Computing. Kluwer
academic publishers.

Kozat, U. C., Tassiulas,L., 2003. Network Layer Support for
Service Discovery in Mobile Ad Hoc Networks. In IEEE
INFOCOM 2003. IEEE Press.

The network simulator - ns-2. Retrieved from
http://www.isi.edu/nsnam/ns/

Peng, W., Lu, X., 2000. On the Reduction of Broadcast
Redundancy in Mobile Ad Hoc Networks. In MobiHoc'00,
pp. 129-130, ACM Press.

Perkins, C. Royer, E., 1999. Ad-Hoc On-Demand Distance
Vector Routing. In 2nd IEEE Workshop on Mobile
Computing Systems and Applications, IEEE Press.

Project JXTA, 2004. JXTA v2.0 Protocols Specification.
Retrieved September 2004 from http://spec.jxta.org/nonav/
v1.0/docbook/JXTAProtocols.html

Rowstron, A. I. T., Druschel, P., 2001. Pastry: Scalable,
Decentralized Object Location, and Routing for Large-Scale
Peer-to-Peer Systems. In Middleware'01, 18th IFIP/ACM Int.
Conf. on Distributed Systems Platforms, LNCS Vol. 2218,
Springer Press.

Toh, C.-K., 1997. Associativity-Based Routing for Ad-hoc
Mobile Networks. Journal of Wireless Personal
Communications, vol. 4, pp. 103-139, Kluwer Academic
Publishers.

Tseng, Y.-C., Ni, S.-Y. , Chen, Y.-S., Sheu, J.-P., 2002. The
Broadcast Storm Problem in a Mobile Ad Hoc Network. In
Wireless Networks, vol. 8, nos. 2/3, pp. 153-167, Mar.-May
2002. Kluwer Academic Publishers B.V.

Wu, J., and Lou, W., 2003. Forward-node-set-based broadcast in
clustered mobile ad hoc networks. Wireless Communications
and Mobile Computing, N.3, pp.155-173, John Wiley &
Sons, Ltd.

Zhao, W., Ammar, M., Zegura, E., 2004. A Message Ferrying
Approach for Data Delivery in Sparce Mobile Ad Hoc
Networks. In MobiHoc'04, ACM Press.

Yoon, J., Liu, M., Noble, B., 2003. Random Waypoint
Considered Harmful. In: Infocom'03. IEEE Press.

	1 INTRODUCTION
	2 SEARCHING SERVICES
	3 TRADE-OFFS
	4 CLUSTERING ALGORITHM
	5 SEARCHING ALGORITHM
	6 SIMULATIONS
	7 CONCLUSIONS
	REFERENCES

