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Abstract: Searching algorithm's performance for mobile ad hoc networks depends strongly on the routing and MAC 
protocol characteristics. MANETs unreliability and routing costs prevent the use of central servers or global 
infra-structured services on top of a priori defined virtual overlay networks. A flooding approach over a 
virtual overlay network created on-demand performs better. A clustering algorithm is required for densely 
populated networks in order to avoid the broadcast storm problem. This paper proposes two new clustering 
and searching algorithms using 1-hop and 2.5-hop neighborhood information. It presents a set of simulation 
results on the clustering efficiency and on searching efficiency for low movement and for high movement, 
showing that the algorithm performance is acceptable for both scenarios. 

1 INTRODUCTION 

The problem of looking for resources on 802.11 
Mobile Ad hoc NETworks (MANETs) is complex 
due to the networks unstable nature. Nodes move 
around independently creating a very dynamic 
network topology. It is assumed that no geographic 
position information is available, which is most of 
the time true indoor. On these conditions, standard 
proactive, table-driven, routing protocols (e.g. 
DSDV (Bhagwat, 94)) have worst performance than 
on-demand routing protocols (e.g. AODV (Perkins, 
99), DSR (Johnson, 96), ABR (Toh, 97), etc.), which 
flood the network looking for an address only when 
it is needed. The problem is that routing information 
becomes outdated too fast, especially for lengthy 
paths. Due to bandwidth restrictions, it is not 
feasible to maintain the tables always updated - it is 
preferable to updated only when needed, possibly 
flooding the entire network with route lookup 
packets at that time.  

The searching protocol performance depends 
strongly on the lower layers of the protocol stack, 
responsible for routing IP packets, and for handling 
the Medium Access Control (MAC). Traditional 
directory (e.g. LDAP (Howes, 98)) and peer-to-peer 
(P2P) services (e.g. Pastry (Rowstron, 01), Tapestry 
(Hildrun, 02), Gnutella (Clip2, 02), FastTrack 
(FastTrack, 01)) create virtual overlay networks. 
They are formed by several nodes connected using 
static TCP links. Their performance drops sharply 
on a MANET if the virtual overlay topology in not 
similar to the network physical topology, due to the 
routing protocol overhead. Crossing several virtual 
links may imply flooding several times the physical 
network after topology changes. An obvious 
alternative is to short-circuit the MANET routing 
protocol and to flood the searching protocol's query 

message directly using multicast or broadcast (e.g. 
ad hoc mode of the JXTA rendezvous protocol 
(JXTA, 04)). However, two problems may occur: 
the 802.11 MAC layer is more error prone for 
multicast/broadcast packets than for unicast packets 
and dense networks may suffer from the broadcast 
storm problem (Tseng, 02). An additional feature 
required for replicated resources is that searching 
must return the nearest replica. It is extremely 
important to reduce the number of hops on a 
communication, and when possible, to preload the 
MANET routing tables during the resource search 
phase.  

This paper presents a new searching algorithm 
for MANETs, which has an interesting trade-off 
between reliability and efficiency, and that locates 
the nearest replica for replicated resources. It is 
optimized for very dynamic continuous MANETs. It 
does not handle the extreme case of delay tolerant 
applications on MANETs scattered on several 
islands, where a pure packet store-and-forward 
approach is required (Zhao, 04). Section two 
presents an overview of existing searching services 
and related work. Section three analyses the main 
trade-offs when designing a searching service. 
Sections four and five present the proposed 
clustering and searching protocols. Section six 
present the ns-2 simulation setup, and an evaluation 
of the proposed protocols using several simulation 
results. Finally, section seven draws some 
conclusions and presents future work directions. 

2 SEARCHING SERVICES 

Searching services may be classified in two big 
classes, regarding on how searching is performed: it 
either uses guided search to a specific node, or a 
flooding approach. The first approach is used for 
structured P2P services (e.g. Pastry, Tapestry, etc.) 



 

and for directory services. Index information is 
stored on a subset of the nodes, where each node is 
responsible for a subset of the index database. The 
protocol also creates routing information that can be 
use to route search queries to the responsible node. 
This approach has low performance for ad hoc 
networks because: a) the maintenance of the routing 
tables is costly on unstable networks (Bernardo, 04); 
b) it is inefficient to concentrate index information 
on a potentially unreliable node. Although, some of 
the structured P2P network organization features 
were used by other authors on MANETs. DPSR 
(Charlie, 03) trades off memory usage by increased 
probability of route path failure: nodes do not store 
in cache the complete path to all destinations, but 
only a subset of the paths, accordingly to the Pastry 
information structure. KELOP (Bashir, 03) uses the 
routing layer caching information and loose 
coherence caching mechanisms to improve the 
structured P2P performance on MANETs. However, 
these two mechanisms fail for very dynamic 
networks. 

A flooding approach is more adapted to 
MANETs due to the null registration costs. All 
efforts are concentrated during the search phase. 
Flooding can be done over an a priori defined 
overlay network (e.g. Gnutella), or directly over the 
network layer, without using the address routing 
protocol (e.g. JXTA rendezvous protocol). On this 
later case, the overlay network is created on demand: 
the query message includes the path traveled; when 
the resource is found, the hit message follows the 
path stored in the query message. This approach 
assumes that networks do not change during a 
search. However, this hypothesis may fail for high 
mobility scenarios. Additionally, this simple 
approach may also fail for dense MANETs, because 
of a high number of concurrent accesses to the 
shared medium, similar to a storm. In order to 
handle the broadcast storm (Tseng, 02) only a subset 
of the nodes must retransmit the search query 
message. This set of nodes is usually called a 
connected dominant set (CDS), and their broadcast 
region must cover the entire set of nodes. The 
remaining nodes should have a passive role, 
generating hit packets only. A new algorithm is thus 
introduced – a clustering algorithm that group nodes, 
and using a set of heuristics elects broadcast group 
leaders (BGLs), responsible for forwarding packets 
for their broadcast group (BG). In order to collect 
information about the neighborhood, most 
approaches require that each node periodically 
broadcasts a beacon packet. (Wu, 03) presents a 
taxonomy for clustering based flooding algorithms, 
where it classifies the algorithms accordingly to the 
state information used. Clearly, due to the inherent 
network instability, it is not possible to use global 

state information, nor any algorithm that requires a 
significant subset of global state information to 
create a CDS. The information state should be local, 
or quasi-local, using information about the node's 
neighbors (1-hop), or at most, its neighbor's 
neighbors (2-hop or 2.5-hop) to reduce the number 
of active nodes. These approaches differ on what 
information is included in the beacon: 1-hop sends 
only local information; 2-hop includes information 
about its neighbors; and 2.5-hop includes 
information about its neighbors BGL, which may be 
3 hops distant. (Dai, 04) presents a thorough study 
for algorithms in low diameter extremely dense 
networks (it analyses 160 nodes on a network 
diameter of three hops). It concludes that algorithms 
using more neighbor information perform better. 
However, it fails to analyze what happens when the 
network diameter grows, and the routing redundancy 
importance grows. (Kozat, 03) proposes a flooding 
search approach where a 2.5-hop algorithm is used 
to define the CDS. However, it tries to create a 
minimum spanning tree using PRUNE packets, 
possibly introducing high signaling overhead for 
unstable network. Every modification on the 
network may change the spanning tree 
configuration.  

3 TRADE-OFFS  

Designing algorithms for potentially unstable 
mobile networks is completely different from 
designing them for static networks with fail silent 
nodes (e.g. wired networks). It is not advisable to 
base search on a minimum CDS (MCDS), which 
connects a minimum spanning tree, because it can be 
too costly to maintain updated the MCDS. 
Beaconing adds to the searching cost a constant cost 
(K) in bytes per second per node, proportional to the 
beacon frequency. It is only worthwhile to use 
beaconing when the result of the sum is below the 
cost without using clustering (L). If α is the fraction 
of nodes which are BGL, and N is the expected 
number of active queries in parallel, then the 
beaconing cost must always satisfy equation 1.  

 K < N.L.(1 - α) (1) 

Therefore, equation 1 limits the maximum 
beacon frequency. This implies that: a) it is possible 
that some old neighbor moved after sending their 
last beacon; b) it is possible to have black nodes on 
the neighborhood, which have not sent any beacon 
yet. Therefore, the CDS must have moderate 
redundancy, allowing it to cope with inaccurate 
neighborhood information and with search packet 
loss. A 1-hop strategy is more redundant (has a 



 

higher α) because it can only decide to forward 
packet based on the visited nodes and on the 
neighbors. A 2.5-hop strategy can select which 
neighbors resend the packet on the 2-hop range. 
However, it is more sensible to outdated 
information. The relative performance of 1-hop and 
2.5-hop algorithms depends on the network 
instability level.  

A second trade-off relates to the use or not of 
unicast packets. Clearly, multicast packets have 
several advantages over unicast packets: they send 
packets to unknown neighbors; they lower the 
network load when sending packets to several nodes 
within radio range. They also have a disadvantage: 
they are more unreliable since no confirmation is 
used for multicast packets on DCF (distributed 
coordination function) mode of 802.11 MAC. 
Unicast uses MACAW protocol, which uses a 
RTS/CTS exchange to reserve a time slot for 
sending packets (avoiding the hidden node 
interference problem that exists on multicast), It 
retransmits packets in case of failure. Unicast can be 
used while sending hit packets, or while flooding 
packets over the network defined by the clustering 
algorithm. However, beacons are always sent using 
multicast, and since their transmission is unreliable, 
then the clustering information is also potentially 
unreliable. This problem may affect clustering 
efficiency on a network near broadcast storm 
situation, where a significant percentage of beacons 
may be lost. This is a second reason not to increase 
the beacon frequency indefinitely, and to use 
preferentially multicast packets to flood the network. 

A final trade-off relates to how clustering is 
made. Classical clustering approaches (Dai, 04) 
group nodes using the node identification or node 
degree (the number of neighbors) to define groups 
and select the BGL. On this paper we propose 
another approach inspired on ABR (Toh, 97): to 
base clustering decisions on beacon stability. The 
rational for this approach is that: there is a strong 
probability that a link remains stable during the next 
interval if the link nodes stay within radio range 
during a minimum interval of time. This clustering 
approach detects these groups of nodes moving 
coherently, and form stable clusters with them. 
Unstable nodes on the neighborhood are treated as 
second class members, which may not lead the 
cluster. For instance, a group of executives on a van 
form a MANET with only stable nodes, because 
they are all stable in relation to each other. However, 
they are moving in relation to nodes external to the 
van.  

4 CLUSTERING ALGORITHM  

The proposed clustering algorithm creates 
groups with a maximum diameter of 2 hops based on 
beacon stability and on the node identification, as a 
second criterion. It can be classified as 1-hop 
clustering, since it is uniquely based in a beaconing 
scheme. Each node periodically sends a beacon 
message. All nodes that receive a beacon from a 
determined node are defined as neighbor nodes. In 
figure 1, dashed lines represent links with neighbor 
nodes.  

 

Fig. 1. Illustration of a MANET with 3 BGs. 
Nodes 1, 5 and 6 are BGLs. 

 
Nodes are grouped according to their link 

stability η. Link stability is defined as the sum of 
consecutive beacons received from a determined 
neighbor. If more than one beacon is lost, then link 
stability is set to null. High stability values represent 
low nodes mobility and vice-versa.  All nodes have a 
beacon table that is used for BGL election. For a 1-
hop searching algorithm, in each beacon message a 
node sends its node identification, its BGL node, and 
the higher link stability value contained in its beacon 
table, which is represented by µ.  

Beacon messages are broadcasted and when a 
new beacon is received, the receiving node identifies 
its source neighbor. If the receiving node beacon 
table contains an entry associated with that source 
neighbor, then it increments η value and copies BGL 
and µ contained in the beacon message to the table 
entry. If not it creates a new entry with BGL and µ 
contained in the beacon message and η value equals 
to 1. Every beacon table entry is automatically 
destroyed if a beacon is not received during two 
beaconing time periods. Table 1 is a hypothetical 
beacon table of node 3 illustrated in figure 1. Node 3 
received 43 beacons from neighbor node 1. A node 
can elect itself as its BGL, as is observed with 
neighbor 1. The algorithm converges frequently to a 



 

set of connected BGLs, as represented in figure 1, or 
where BGL are separated by one non-BGL when 
networks have higher connectivity. Node's 5 BGL is 
node 1, but node 5 is also a BGL elected by node 4. 
The subset of BGL plus the non-BGL nodes 
connecting BGLs define a backbone, which can be 
used to broadcast packets on a stable set of nodes. 

 
Neighb. Stability - 

η 
BGL Neighb. 

Stability - µ 
1 43 1 43 
2 8 6 64 
4 2 5 33 
 
Table 1. Beacon table of node 3 on figure 1 
 
A node is stable if there is at least one η value 

contained in its beacon table that is higher than a 
defined stability_threshold. BGL election 
algorithm is performed on each node after a new 
beacon reception. The election algorithm is 
summarized in figure 2. In line 1, it computes the 
maximum values of η and µ contained in the beacon 
table. An unstable node cannot be elected as BGL 
but it can elect its BGL, since it has one or more 
stable nodes in its neighborhood. In this case it is 
elected the neighbor with highest µ value (algorithm 
lines 25 to 30). If it does not have stable neighbors, 
the BGL field is left empty. For a stable node, first it 
is computed a sort list of all available neighbor's 
BGL (lines 5 to 7), that includes the node in case of 
being BGL (lines 8 to 9). This list is sorted from the 
smallest to the largest BGL address. Having some 
elected BGL in the neighborhood, the key idea is 
choose a stable neighbor node that has the lowest 
address and is also a BGL (lines 11 to 15), or choose 
the node itself if there are no lower BGL node’ 
address in its neighborhood (lines 16 to 18). If there 
are no BGLs elected in its neighborhood, a node 
simply elects its neighbor with the highest η value as 
its BGL (lines 20 to 24). If there is more than one 
neighbor pursuing the maximum η value then it is 
elected the node with lowest address. 

Cluster overlapping can occur in result of 
sticking together several 1-hop radius clusters into a 
wider cluster. Usually the BGL is also a member of 
another group when BG has a single neighbor BG, 
as presented in figure 1. During system startup, a 
transitory overlap may also appear, because the 
initial criteria for selecting BGL is link stability 
(lines 21 to 23), which possibly is different from 
node to node. However, on this last case, when 
several BGLs exist for a set of stable nodes within 
radio range, they are merged into a single cluster 
(lines 10 to 18) after one beacon period. Two nodes 
from overlapped clusters sort neighbor's BGLs 

independently into the same order and converge to 
the same BGL. A node that receives n new beacons 
must receive all of them during the beaconing 
period, but they can be delivered with different time 
drifts (jitter). This instability does not affect the 
initial BGL election, because transient_threshold 
was set to one. Therefore, BGL is elected from a set 
of nodes that contains not only the neighbors with 
the higher stability value, but also all neighbors that 
could get that stability value during the present 
beaconing period. 

1.  (ηmax, µ max)=find_maximum_η_and_µ_values_in_ 
                           neighborhood_table() 
2.  last_addr = MAX_INT 
3.  pre_elected = -1 
4.  if is_stable(na)  // stable node 
5.    //insert all known BGL’s neighbor nodes  
      //in n BGL_list 
6.    for each neighborhood_node nx 
7.      insert_in_sort_list(BGL(nx),BGL_list) 
8.    if is_BGL(na) // if this node is BGL       
9.      insert_in_sort_list(na,BGL_list) 
10.   // Choose BGL based on stability and 
      // lowest address criteria 
11.   for each bglx contained in BGL_list 
12.     for each neighborhood_node nx 

13.       if ((nx=bglx)and(is_stable(nx))) 
14.         pre_elected = nx 

15.     if (pre_elected ≠-1) break; 
16.     if (na=bglx) // auto-election 
17.       pre_elected = na 

18.       break 
19.   // elect new BGL 
20.   if (pre_elected =-1)//BGL is not selected 
21.     for each neighborhood_node nx 

22.       if (ηmax-η(nx)-transient_threshold ≤ 0) 
                         ∧ (addr(nx)<last_addr) 
23.         last_addr = addr(nx) 
24.         pre_elected = nx 
25. else  // unstable node 
26.   // elect BGL if it is available 
27.   for each neighborhood_node nx 

28.     if (µmax-µ(nx)-transient_threshold ≤ 0) ∧ 
                           (addr(nx)<last_addr) 
29.       last_addr = addr(nx) 
30.       pre_elected = nx 
31. BGL_ELECTED = pre_elected 

 
Fig. 2. Outline of BGL node election algorithm 

applied in node na. 
 
If a node stops the beaconing transmission 

process, because of mobility or operational reasons, 
each one of its old neighbors will take two 
beaconing periods to detect its absence. During this 
time period incorrect BGL elections may occur. 
However, beacon loss can also result from message 
loss due to congestion, producing false alerts.  

A second version of clustering algorithm was 
implemented to support 2.5-hop searching 
algorithms. The only modification was the addition 
of a neighbor's BGL list to the beacon message. 
Notice that conventional 2.5-hop clustering 



 

algorithms (Wu, 03) usually have must more 
overhead because they send the entire list of 
neighbors on the beacon. 

This clustering algorithms performance depends 
on the network stability. Its beacon period should be 
selected accordingly to the nodes velocity, limited 
by the maximum supported rate. If a large 
percentage of the nodes are "stable", the algorithm is 
able to detect them, and reduce their load by creating 
clusters. If all nodes are unstable, beaconing only 
introduces extra overhead. Notice however that non-
clustered searching algorithms are more immune to 
errors. If conventional criteria were used, the 
clustering algorithm would create highly unstable 
clusters, which would include passing-by moving 
nodes, and would root search packets based on this 
error prone information.  

5 SEARCHING ALGORITHM  

This section proposes a new searching algorithm 
based on the 1-hop clustering algorithm presented 
above, tuned for very unstable networks. It also 
presents an alternative 2.5-hop based searching 
algorithm (with tuning optimizations similar to the 
1-hop version). Both algorithms will be compared 
on the next section. 

The searching algorithm was developed as an 
evolution of the basic source routing flooding 
algorithm (SR): The lookup operation is started with 
a query message originated by a node, which carries 
a unique identification (Qid), its source node (nsource) 
and the resource identification to locate (Rid). This 
message is successively resent by each node, as long 
as it has not been received before. Nodes maintain a 
local table indexed by source node id, with last 
query' ids received. A hit message is sent to the 
source node when any local information satisfies the 
query. Hits are routed to the query's node source 
using the path included in the query message. 
Bandwidth usage could be reduced if hit routing 
information is store in the nodes (Clip2, 02). 
However, this second approach is less reliable 
because all up flow path is lost in case of node 
movement or failure, whereas on the first, it can 
jump a few nodes on the path. 

The clustering algorithm classifies nodes has 
BGL, or non-BGL. Eventually, the node can be 
isolated, if is outside any BG, and thus it did not 
elect a BGL. A node knows that it is a BGL when it 
receives a beacon selecting him. The proposed 
searching algorithm modifies SR in three ways: 

a) BGL and isolated nodes always broadcast 
queries one time, while non-BGL nodes 
may inhibit its transmission, if they have 

the certainty that all its neighbors had 
already received the query; 

b) The query path list size is reduced by 
containing only BGLs, except for the tail, 
which may have some non-BGLs; 

c) Hit messages use flooding when the reserve 
path fails. 

In order to reduce the bandwidth usage, non-
BGL nodes use the neighborhood information 
collected with the clustering algorithm, and the 
query path list, in the query message (a). Two 
approaches were proposed: using 1-hop or 2.5-hop 
information. 

Two modifications are common to the two 
approaches above. The query path list shortening (b) 
results from the addition of node storage of parts of 
the total query path. The non-BGL node list at the 
tail of the list is stored and pruned, each time the 
message passes on a BGL. BGLs maintain in its 
internal lists, the partial path with non-BGL from the 
previous BGL, which may include several unstable 
nodes. Since this information can be volatile, it can 
be stored on a less secure place. In case of node 
failure, the node can always use the BGL list (inside 
the query message) to recover the route to the query 
source. When hit messages follow the query reserve 
path unicast is used and their sending is confirmed. 
They retrieve the unstable list at each BGL, and 
follow the reverse path. When a link fails, the node 
looks at its neighbor list, and neighbor's BGL list, 
looking for any node on the reverse path. As a last 
resort, when no information is available, the node 
that detects the failure starts a hit message flooding 
(c). The hit message is treated as a special query 
packet, looking for a node id within the remaining 
query path list, which does not receive any reply. Hit 
flooding stops when the message reaches a node 
whose neighbor's (or the node itself) are part of the 
remaining path. Therefore, contrary to SR, the 
proposed algorithms are able to survive to extreme 
mobility, and route hit messages over failed or 
moving nodes. 

A. 1-hop searching algorithm 

The 1-hop searching algorithm proposed results 
from an improvement of SBA (Peng, 00), which was 
initially designed without clustering. Using the 1-
hop clustering algorithm, a node has information 
about its neighbors' BGL. When a non-BGL node 
receives a new query, it first queues the message in a 
local buffer, creates a local variable with the list of 
visited BGL, and starts a timer, for a fixed delay 
plus a jitter interval. When the timer triggers, the 
node checks to see if all neighbors' BGL and local 
BGL are already listed in the visited BGL list. If 
they are not, then it resends the message, to cover 
the missing BGLs. Otherwise, it drops the message. 



 

While the timer is active, it continues to receive 
replicas of search messages resent by neighbors, just 
for extracting the query path list, and to update the 
visited BGL list. Since BGLs do not delay the 
message and isolated nodes do, search path goes 
preferentially over the BGL backbone. Due to the 
timer's jitter, this approach limits the number of 
retransmissions that occur on dense networks. The 
first non-BGL transmission triggers the immediate 
transmission of the missing BGL, shutting off all the 
remaining transmissions.  

This first algorithm does not guarantee total 
coverage on unstable networks, because it does not 
guarantee the coverage of black nodes (nodes in the 
neighborhood that did not yet transmit a beacon). It 
handles transmission errors similarly to SR, nodes 
keep sending a query message as long as a BGL 
does not appear on the path. This behavior may 
originate load peaks after a node failure or 
movement. Finally, it delays the search, compared to 
the other algorithms analyzed on this paper.  

B. 2.5-hop searching algorithm 

For the 2.5-hop clustering algorithm, a node has 
information about all BGLs and isolated nodes 
within 2-hop distance. In order to reduce bandwidth 
usage, each sending node puts in the query message 
the list of non-BGL nodes at 1-hop distance (v) that 
must resend the message. All BGL nodes always 
resend the message. The message is sent by the 
query starting node; by each BGL and isolated 
nodes; and by the non-BGL nodes that are in list v. 
List v is constructed from the set of 1 hop neighbors, 
and includes the non-BGLs required to cover all 2-
hop distance BGLs. The algorithm: 1) first adds the 
neighbor nodes with unique paths to a BGL; 2) then, 
adds the neighbors that cover the maximum number 
of BGLs not yet in the list. A minimum node 
identification criterion was used to select from nodes 
with similar number of BGLs accessible. 

This second algorithm is more sensible to errors 
in the clustering information, since it uses topology 
information received one beacon period ago to select 
on-demand the next hop for the query message 
flooding. Since it reduces the flooding to a MCDS, it 
also has less redundancy to tolerate transmission and 
topology errors, compared to the other algorithms.  

6 SIMULATIONS  

To study the clustering algorithm performance for 
different node densities, seven different simulation 
scenarios were defined. In each scenario nodes are 
moving during 10 simulation hours in a 1000m x 
1000m area, using an improved Random Waypoint 

mobility model (Yoon, 03). Mobility model 
parameters are 0.1 m/s and 3 m/s for minimum and 
maximum velocity, respectively and 3600 seconds 
for pause time. Each node has approximately 100 
meters of communication range, and its beaconing 
frequency is 1 Hz. Using beacon reception 
information, it was computed the average number of 
nodes in the neighborhood, to compare with the 
average number of nodes that elect the same BGL. 
First simulation uses 75 nodes, and it was the lowest 
node density value simulated. The average number 
of neighbors is around 2 nodes, which states that the 
optimum value for average BG dimension should be 
around 3 nodes, counting 2 neighbors and the node 
that detects the neighborhood. Simulation results 
presented in figure 3 show that average dimension of 
BG is approximately 3 nodes, which is closed to the 
optimum value. In the following simulations, nodes’ 
densities were increased. Results show that average 
number of neighbors will increase, as expected, but 
the average of BG dimension will increase more 
slowly because the standard deviation will be higher. 
This is mainly because of BGs merging operation. 
The average of nodes without election of was also 
computed and is presented in table 2. Simulations 
with lower node densities present higher average of 
nodes without election of BGL, as expected. In high-
density scenarios, less than 1% of all nodes don’t 
belong to any BG. Other important feature is that 
average BGL election period will decrease for 
higher density values, because the BGs dimension 
increases which also increases the probability a node 
leave the BG resulting in a new BGL election. 
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Fig. 1.  Average broadcast group dimension versus 
average number of neighbors for 7 simulations. Lines 
presented over the bars represent standard deviation. 

The clustering algorithm performance for 
different node mobility scenarios was also tested 
using five different average node speeds for the 
network above with 250 nodes, modeled using the 



 

Random Waypoint mobility model. Figure 4 shows 
that the clustering algorithm performance degrades 
with the speed increase. It affects mainly the BGL 
average election time that is reduced to about 5 
seconds for an average speed of 40 m/s. The average 
BG dimension stabilizes on an average size of three 
members, for speeds above 20 m/s, proving that 
some aggregation is still possible due to the node's 
pause times. 

Density 
[nodes/km^2] 

75 100 125 150 175 200 250 

Without 
BGL 
[%nodes/sec] 

12.1 7.8 4.0 2.2 1.2 0.9 0.2 

Table 2. Average number of nodes without BGL, and 
average BGL election period statistics. 
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Fig. 4.  Average broadcast group dimension and duration 
versus node average speed for 5 simulations. Lines 
presented over the bars represent standard deviation. 

The three proposed clustering algorithms were 
analysed for three extreme scenarios: low speed 
MANETs (average speed of 1 m/s) and high speed 
MANETs (average speed of 40 m/s), on the 
conditions presented above. Figure 5 shows that the 
two improvements proposed for the two clustering 
approaches perform better than source routing for 
both high and low mobility. The results are 
disastrous for source routing for high mobility 
scenarios because the answer message is lost when a 
node on the path moves. Results for 2.5-hop 
clustering information are also worst than 1-hop for 
high mobility because clustering information is less 
precise, and 2-5-hop approach uses this information 
to control flooding. On the other hand, 1-hop 
introduces a higher packet delay. For low mobility 
scenarios, 2.5-hop clustering approach provides the 
best performance, because it uses the lower number 

of packets to flood the network, based of reliable 
clustering information. Answer messages loss relate 
to collisions, which are compensated by the flooding 
approach for the clustering approaches.  
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Fig. 5.  Success rate and end-to-end delay for source 
routing; 1-hop and 2.5-hop clustering algorithms for 2 
node average speeds.  

Figure 6 presents the total bandwidth load for the 
conditions above. It shows that flooding based on 
the clustering algorithm is capable of reducing the 
total bandwidth usage on the network, for low node 
mobility. When node mobility is high, clustering 
approaches use flooding to compensate return path 
loss, increasing the total load, and a higher number 
of collisions.  
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Fig. 6.  Bandwidth load and collisions for source routing; 
1-hop and 2.5-hop clustering algorithms for 2 node 
average speeds. 



 

7 CONCLUSIONS 

This report proposes two new approaches for 
searching on unstable MANET, supported on 
positioning information provided by a clustering 
algorithm. It shows that for high mobility scenarios, 
performance improves for the algorithms the use the 
least possible network information (1-hop). It also 
shows that source routing approach fails for high 
mobility scenarios. Since most MANET routing 
protocols are based on source routing, this can 
present an important problem for common 
applications, not prepared to handle this kind of 
instability.  

This report presents on-going work. Further 
study is being made on beacon overhead reduction 
and beacon self-stabilization algorithms, which 
reduce beacon collision effects. Further work is also 
being done for searching algorithms for less unstable 
networks, where a DHT approach may be used on 
top of a stable virtual overlay network.  
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