

Dissertações para 2024/2025 1º Semestre

Secção de telecomunicações Dept. Engenharia Electrotécnica e de Computadores Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa

Resumo

Resumo

- 1. Introdução
- 2. Apresentação das dissertações
- 3. Perguntas

- > Introdução às áreas de investigação no grupo
- > Apresentação das propostas de dissertação
- Perguntas

Áreas de investigação

<u>Resumo</u>

- 1. Introdução
- 2. Apresentação das dissertações
- 3. Perguntas

Redes de Telecomunicações

Desenho e arquitetura de redes; Protocolos de comunicação; Software de rede e aplicações; Operação e gestão de redes; etc.

Comunicação

Comunicações sem fios; Comunicações com espalhamento de espectro; Sincronização, equalização, deteção e estimação de canal; Modulação e desenho de sinal; Teoria da codificação e aplicações; etc.

Antenas e Propagação

Modelação de meios de propagação e antenas; Comunicação digital em ondas milimétricas (mmWave) e em Terahertz (THz). Desenho e análise de sistemas de múltiplas antenas.

Áreas de investigação

Resumo

- 1. Introdução
- 2. Apresentação das dissertações
- 3. Perguntas

> Redes de Telecomunicações

Paulo Pinto, Luis Bernardo, Rodolfo Oliveira, Pedro Amaral

Comunicação

Rui Dinis, Paulo Montezuma

> Antenas e Propagação

João Guerreiro

Resumo

1. Introdução

DISSERTAÇÕES PROPOSTAS

- 2. Apresentação das dissertações
- 3. Perguntas

#1 Traffic scheduler for WiFi 6 (802.11ax)

Resumo

1. Introdução

Apresentação das dissertações

3. Perguntas

Main goal: Schedule polls, receive interests, and assign resources to stations

Workplan:

- □Understand the problem and the ns3 implementation
- □Either use the ns3 solution, or change it slightly
- □Run experiments based on real or artificial traffic

Supervisor: Paulo Pinto & Luis Bernardo

#1 Traffic scheduler for WiFi 6 (802.11ax)

Resumo

1. Introdução

Apresentação das dissertações

3. Perguntas

#1 Traffic scheduler for WiFi 6 (802.11ax)

Cycle 2

Cycle 1

OFDMA Multi-User Communications

Cycle i

Cycle n

Resumo

1. Introdução

Apresentação das dissertações

3. Perguntas

Time →

SIFS

#2 Radio Frequency Fingerprinting for Physical Layer Authentication on ZigBee networks

<u>Resumo</u>

1. Introdução

 Apresentação das dissertações

3. Perguntas

Main goal: Design and testing of machine learning generative algorithms for PHY layer authentication using Software Defined Radio.

Starting Point:

- □ Use existing GNU Radio software and Python classification software for the creation of a database of signals using 34 802.15.4 wireless sensors (IRIS/TelosB), NUAND SDR modules and existing GnuRadio software.
- □Continuation of the thesis that won the 33° APDC award for the best thesis in telecommunications in 2024

Requirement:

□ Availability to learn ML techniques and develop software in Python (Deep Learning) and C+ (GNU Radio)

#2 Radio Frequency Fingerprinting for Physical Layer Authentication on ZigBee networks

Resumo

- 1. Introdução
- Apresentação das dissertações
- 3. Perguntas

<u>Challenges:</u>

- □ML classifiers do not generalize well when the training signals are recorded in different conditions from the test (near/far or still/moving)
- ☐ How resilient the techniques are to spoofing attacks?

Workplan:

- Explore new ML algorithms more capable of creating signatures valid for different types of channels e.g. generative adversarial networks, transformers and variational autoencoder networks
- ☐ Use two NUAND SDR to generate/receive signals and evaluate the capacity of the classification algorithms to identify generative signals.
- □RFF performance evaluation
- ☐Thesis writing

Supervisor: Luis Bernardo

#3 Fast Reconvergence in DRL based routing with topology changes.

Main goal: Use federated learning and alternative versions of the network topology to

quickly learn how to route in the presence of failures and topology changes.

<u>Resumo</u>

- 1. Introdução
- Apresentação das dissertações
- 3. Perguntas

Workplan:

- Survey the state of the art on fast reconvergence in DRL based routing algorithms.
- Model definition (State, actions, reward, choice of DRL algorithm)
- Build twin alternative versions
- Implement the federated learning

 New Routing Policy

 Data Plane

 Control Plane

 3

Federated Parameters

Action

Decision Module

Latest

Network

State

Digital Twin Network

Acceleration Module

Supervisors: Pedro Amaral

#4 Vulnerability identification in DRL based network Control – Model Extraction

<u>Resumo</u>

- 1. Introdução
- Apresentação das dissertações
- 3. Perguntas

<u>Context</u>: Deep Reinforcement Learning (DRL) is a promising framework for resource management in hard to model complex and dynamic environments. A DRL agent learns how to distribute resources to maximize reward. A control method based in DRL can be attacked using adversarial tactics. A particularly powerful attack is a model extraction attack, that can provide information on the inner workings of the DRL agent and increase the rates of success of adversarial attacks on the state-space.

Main goal: Study and experiment methods to perform model extraction of DRL algorithms

Workplan:

- ☐ Study the existing Deep Learning model extraction techniques and the few existing proposals for the DRL case.
- ☐ Design the model extraction to use.
- ☐ Use an existing DRL model and implement the model extraction technique.
- Evaluation (via simulation: Pythton using Mininet or ContainerNet): Training of the extraction model by observation of the DRL agent interaction with the environment. Comparison of the both the original and the extracted model to evaluate the accuracy.

#5 Moving target defence (Host address Mutation) based in DRL

Resumo

- 1. Introdução
- Apresentação das dissertações
- 3. Perguntas

<u>Context</u>: A moving target defense technique called host address mutation (HAM) makes network reconnaissance (the first step of most attacks)more difficult to an attacker.

<u>Challenges</u>: Adaptability to adversarial strategies, maintaining existing connections, assuring unpredictability.

Main goal: Use DRL to perform the Address mutation in order to maximize the probability of avoiding network scanning.

Workplan:

- ☐ Study the existing HAM methods
- ☐ Model the problem as a MDP and design the DRL agent.
- ☐ Implement the DRL agent and a system simulator (this can be done with mininet and an SDN controller)
- ☐ Evaluation using known scanning techniques.

Supervisor: Pedro Amaral

Resumo

- 1. Introdução
- Apresentação das dissertações
- 3. Perguntas

Motivation:

Part of future 6G systems are expected to work in a Grant-free way, i.e., the devices avoid sending a grant acquisition request to the BS and can randomly transmit a preamble without requiring an explicit grant from the BS

(in a contention-based manner using a common set of resources),

thus decreasing the channel access delay.

E.g., uplink for physical random access channel (PRACH) preamble transmission in 5G

Grant-free or Autonomous/uncoordinated UL transmission

Resumo

1. Introdução

 Apresentação das dissertações

3. Perguntas

Motivation:

The BS can decode multiple preambles transmitted at the same time from

multiple transiters

Resumo

1. Introdução

 Apresentação das dissertações

3. Perguntas

14 transmitting nodes and9.7 successfully received

22 transmitting nodes and12 successfully received

25 transmitting nodes and 12.5 successfully received

Resumo

1. Introdução

 Apresentação das dissertações

3. Perguntas

Goal:

Design innovative access schemes that take advantage of the statistics of the receiver by adopting advanced machine and deep learning tools

Methodology:

- 1. Definition of the communication network scenarios
- 2. Simulation of the performance
- 3. Design of the Access Scheme
- 4. Optimization based on Deep Learning (how to regulate the access to increase the the number of decoded packets)
- 5. Performance Evaluation
- 6. Thesis Writing

Supervisor:

Rodolfo Oliveira

#7 Implementation of Services in 5G Networks

Norf

Nausf

N15 N8

Nudm

Nsmf

Npcf

Naf

Resumo

1. Introdução

2. Apresentação das dissertações

3. Perguntas

Nnssf

Service Based

Architecture

SBI Message Bus

SBA APIS

#7 Implementation of Services in 5G Networks

Resumo

1. Introdução

Apresentação das dissertações

3. Perguntas

Goal:

Develop a testbed environment of a 5G core network.

Methodology:

- 1. Literature Review: Conduct a comprehensive review of current research and technical standards related to 5G core network services.
- 2. Testbed Development: Set up a test environment using industry-standard 5G core network simulation tools (e.g., Open5GS, free5GC).
- 3. Performance Testing: Design test scenarios for each service (network slicing, edge computing, security) and perform detailed performance evaluations.
- 4. Data Analysis: Use statistical methods to analyze test data, identifying trends, performance issues, and reliability concerns.
- 5. Reporting

Supervisor:

Rodolfo Oliveira

#8 RF-based Context-awareness Demonstrator

Resumo

- 1. Introdução
- Apresentação das dissertações
- 3. Perguntas

Goals:

- 1. Designing a system architecture that leverages RF signals for context sensing.
- 2. Implementing the hardware and software components necessary for real-time operation.
- B. Demonstrating the system's capabilities through practical use case scenarios.

Methodology:

- Literature Review: Conduct a comprehensive review of current research on RF-based sensing and context-awareness.
- 2. Testbed Development: Set up a test environment using active RF sensing and evaluate different context-awareness algorithms.
- 3. Performance Testing: Evaluate the performance of the algorithms proposed in task 2.
- 4. Demonstrator implementation: Develop an application with a friendly GUI to serve as a demonstrator.
- 5. Reporting

Supervisor:

Rodolfo Oliveira

#8 RF-based Context-awareness Demonstrator

Resumo

- 1. Introdução
- Apresentação das dissertações
- 3. Perguntas

#8 RF-based Context-awareness Demonstrator

Resumo

1. Introdução

Apresentação das dissertações

3. Perguntas

Resumo

- 1. Introdução
- 2. Apresentação das dissertações
- 3. Perguntas

